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PREFACE

Our goal in writing this book is to present a comprehensive and up-to-date
treatment of the subject of inviscid, incompressible, and irrotational aerodyna-
mics. Over the last several years there has been a widespread use of
computational (surface singularity) methods for the solution of problems of
concern to the low-speed aerodynamicist. A need has developed for a text
to provide the theoretical basis for these methods as well as to provide a
smooth transition from the classical small-disturbance methods of the past to
the computational methods of the present. This book was written in response
to this need. A unique feature of this book is that the computational approach
(from a single vortex element to a three-dimensional panel formulation) is
interwoven throughout so that it serves as a teaching tool in the understanding
of the classical methods as well as a vehicle for the reader to obtain solutions
to complex problems that previously could not be dealt with in the context of a
textbook. The reader will be introduced to different levels of complexity in the
numerical modeling of an aerodynamic problem and will be able to assemble
codes to implement a solution.

We have purposely limited our scope to inviscid, incompressible, and
irrotational aerodynamics so that we can present a truly comprehensive
coverage of the material. The book brings together topics currently scattered
throughout the literature. It provides a detailed presentation of computational
techniques for three-dimensional and unsteady flows. It includes a systematic
and detailed treatment (including computer programs) of two-dimensional
panel methods with variations in singularity type, order of singularity,
Neumann or Dirichlet boundary conditions, and velocity- or potential-based
approaches.

This book is divided into three main parts. In the first, Chapters 1-3, the
basic theory is developed. In the second part, Chapters 4-8, an analytical
approach to the solution of the problem is taken. Chapters 4, 5, and 8 deal
with the small-disturbance version of the problem and the classical methods of
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thin-airfoil theory, lifting-line theory, slender wing theory, and slender body
theory. In this part exact solutions via complex variable theory and perturba-
tion methods for obtaining higher-order small-disturbance approximations are
also included. The third part, Chapters 9-14, presents a systematic treatment
of the surface singularity distribution technique for obtaining numerical
solutions for incompressible potential flows. A general methodology for
assembling a numerical solution is developed and applied to a series of
increasingly complex aerodynamic elements (two-dimensional, three-
dimensional, and unsteady problems are treated).

The book is designed to be used as a textbook for a course in low-speed
aerodynamics at either the advanced senior or the first-year graduate levels.
The complete text can be covered in a one-year course and a one-quarter
or one-semester course can be constructed by choosing the topics that the
instructor would like to emphasize. For example, a senior elective course that
concentrated on two-dimensional steady aerodynamics might include Chapters
1-3,4,5,9, 11, 8, 12, and 14. A traditional graduate course that emphasized
an analytical treatment of the subject might include Chapters 1-3,4,5-7,8,9,
and 13; and a course that emphasized a numerical approach (panel methods)
might include Chapters 1-3 and 9-14 with a treatment of pre- and post-
processors. It has been assumed that the reader has taken a first course in
fluid mechanics and has a mathematical background that includes an exposure
to vector calculus, partial differential equations, and complex variables.

We believe that the topics covered by this text are needed by the fluid
dynamicist because of the complex nature of the fluid dynamic equations,
which has led to a mainly experimental approach for dealing with most
engineering research and development programs. In a wider sense, such an
approach uses tools such as wind tunnels or large computer codes where the
engineer/user is experimenting and testing ideas with some trial-and-error
logic in mind. Therefore, even in the era of supercomputers and sophisticated
experimental tools, there is a need for simplified models that allow for an easy
grasp of the dominant physical effects (e.g., having a simple lifting vortex in
mind, one can immediately tell that the first wing in a tandem formation has
the larger lift).

For most practical aerodynamic and hydrodynamic problems, the classi-
cal model of a thin viscous boundary layer along a body’s surface surrounded
by a mainly inviscid flowfield, has produced important engineering results. This
approach requires first the solution of the inviscid flow to obtain the pressure
field and consequently the forces such as lift and induced drag. Then, a
solution of the viscous flow in the thin boundary layer allows for the calcula-
tion of the skin friction effects. This methodology has been used successfully
throughout the twentieth century for most airplane and marine vessel designs.
Recently, due to developments in computer capacity and speed, the inviscid
flowfield over complex and detailed geometries (such as airplanes, cars, etc.)
can be computed by this approach (Panel methods). Thus, for the near
future, since these methods are the main tools of low-speed aerodynamicists all

PREFACE XV

over the world, a need exists for a clear and systematic explanation of how and
why (and for which cases) these methods work. This book is one attempt to
respond to this need.

We would like to thank graduate students Lindsey Browne and especially
Steven Yon who developed the two-dimensional panel codes in Chapter 11 and
checked the integrals in Chapter 10. We would like to acknowledge the helpful
comments from the following colleagues who read all or part of the
manuscript: Holt Ashley, Richard Margason, Turgut Sarpkaya, and Milton Van
D){ke. Allen Plotkin would like to thank his teachers Richard Skalak
Krishnamurthy Karamcheti, Milton Van Dyke, and Irmgard Flugge-Lotz his’
parents Claire and Oscar Plotkin for their love and support, and his chil(,iren
Jennifer Anne and Samantha Rose, and especially his wife Selena for their
love, support and patience. Joseph Katz would like to thank his parents Janka
anq Jeno Katz, his children Shirley, Ronny, and Danny, and his wife Hilda for
their love, support, and patience. The support of the Low-Speed Aerodynamic
Branf:h. at NASA Ames is acknowledged by Joseph Katz for their inspiration
that initiated this project and for their help during past years in the various
stages of developing the methods presented in this book.

McGraw-Hill and the authors would like to thank the following reviewers
for their many helpful comments and suggestions: Leland A. Carlson, Texas
A &M University; Chuen-Yen Chow, University of Colorado; Fred’R De
Jarnet?e, North Carolina State University; Barnes W. McCormick I;enn-
sylvania State University; and Maurice Rasmussen, University of Oklailoma.

Joseph Katz
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CHAPTER

1

INTRODUCTION
AND BACKGROUND

The differential equations that are generally used in the solution of problems
relevant to low-speed aerodynamics are a simplified version of the governing
equations of fluid dynamics. Also, most engineers when faced with finding a
solution to a practical aerodynamic problem, find themselves operating large
computer codes rather than developing simple analytic models to guide them
in their analysis. For this reason, it is important to start with a brief
development of the principles upon which the general fluid dynamic equations
are based. Then we will be in a position to consider the physical reasoning
behind the assumptions that are introduced to generate simplified versions of
the equations that still correctly model the aerodynamic phenomena being
studied. It is hoped that this approach will give the engineer the ability to
appreciate both the power and the limitations of the techniques that will be
presented in this text. In this chapter we will derive the conservation of mass
and momentum balance equations and show how they are reduced to obtain
the equations that will be used in the rest of the text to model flows of interest
to the low-speed aerodynamicist.

1.1 DESCRIPTION OF FLUID MOTION

The fluid being studied here is modeled as a continuum and infinitesimally
small regions of the fluild (with a fixed mass) are called fluid elements or fluid

1
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Trajectory of z ﬁ\
a particle

Po(xo, M—_\‘\
ﬁ : x 2
X

FIGURE 1.1 . '
Particle trajectory lines in a steady
coordinate system.

_state flow over an airfoil as viewed from a body-fixed

particles. The motion of the fluid can be described by two different methods.

le point of view and follows the motion of the individual

dopts the partic . ; _
g:r:i;e(s).p The oI;her adopts the field point of view and provides the flow

i ition i nd time.
iables as functions of position in space a '
v The particle point of view, which uses the approach of classical

mechanics, is called the Lagrangian method. To trace tl:;: mt(;ti:yr;t:fn ez:vcitt‘hﬁ;ll:(ei
i it i i i rtesian coordina
le, it 18 convenient to introduce a cai : : : :
E:’(z:(r)t:;inates x, y, and z. The position of any fluid particle P (see Fig. 1.1) is
then given by
X =xP(x0) Yo, 2y, t) . 1
y =yp(Xo, Yo, Z0, 1) (1.1
z = zp(Xo0» Yo, Z0, 1)
initial ti = hat the
i iti P at some initial time ¢ = 0. (Note t
here (xo, Yo, Zo) is the position of '
:uantit(y (Ex:,o Yo, Zo) represents the vector with compogents Xo, Yo, and zo.) The
components of the velocity of this particle are then given by

o L, 2 (1.2)
=% Y& " &
d the acceleration by
* x &y 3z (1.3)
aX

=% YT YT

The Lagrangian formulation require§ th.e evah.latlon :i)f theorfniont;g:m (;f
each fluid particle. For most practical applications tt-us abul:l anl(-:nee
tion is neither necessary nor useful and the an?ly31s is cn:im ersqdes. the spatial
The field point of view, called the Eulerian method, provi
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distribution of flow variables at each instant during the motion. For example, if
a cartesian coordinate system is used, the components of the fluid velocity are
given by

u=u(x,y, z,1t)

v=v(x,y, z,1) (1.4)
w= w(x’ y, 2, t)

The Eulerian approach provides information about the fluid variables
that is consistent with the information supplied by most experimental
techniques and is in a form that is appropriate for most practical applications.
For these reasons the Eulerian description of fluid motion is the most widely
used.

1.2 CHOICE OF COORDINATE SYSTEM

For the following chapters, when possible, primarily a cartesian coordinate
system will be used. Other coordinate systems such as curvilinear, cylindrical,
spherical, etc., will be introduced and used if necessary, mainly to simplify the
treatment of certain problems. Also, from the kinematic point of view, a
careful choice of a coordinate system can considerably simplify the solution of
a problem. As an example, consider the forward motion of an airfoil, with a
constant speed U, in a fluid that is otherwise at rest—as shown in Fig. 1.1.
Here, the origin of the coordinate system is attached to the moving airfoil
and the trajectory of a fluid particle inserted at point P, at ¢ =0 is shown in
the figure. By following the trajectories of several particles, a more complete
description of the flowfield is obtained in the figure. It is important to ob-
serve that for a constant-velocity forward motion of the airfoil, in this frame
of reference, these trajectory lines become independent of time. That is, if
various particles are introduced at the same point in space, then they will
follow the same trajectory.

Now let’s examine the same flow, but from a coordinate system that is
fixed relative to the undisturbed fluid. At ¢ =0, the airfoil was at the right side
of Fig. 1.2 and as a result of its constant-velocity forward motion (with a speed
U.. towards the left side of the page), later at ¢ =¢, it has moved to the new
position indicated in the figure. A typical particle’s trajectory line between

Particle trajectory
Airfoil position
Airfoil position at 7 = ¢,

FIGURE 1.2
Particle trajectory line for the airfoil of Fig. 1.1 as viewed from a stationary inertial frame.
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=0 and t,, for this case, is shown in Fig. 1.2. The particle’s motion now
depends on time and a new trajectory has to be established for each particle.
This simple example depicts the importance of “good” coordinate system
selection. For many problems where a constant velocity and a fixed geometry
(with time) are present, the use of a body-fixed frame of reference will result in
a steady or time-independent flow.

13 PATHLINES, STREAK LINES, AND
STREAMLINES

Three sets of curves are normally associated with providing a pictorial
description of a fluid motion: pathlines, streak lines, and streamlines.

Pathlines. A curve describing the trajectory of a fluid element is called a
pathline or a particle path. Pathlines are obtained in the Lagrangian approach
by an integration of the equations of dynamics for each fluid particle. If the
velocity field of a fluid motion is given in the Eulerian framework by Eq. (1.4)
in a body-fixed frame, the pathline for a particle at P, in Fig. 1.1 can be
obtained by an integration of the velocity. For steady flows the pathlines in the
body-fixed frame become independent of time and can be drawn as in the case
of flow over the airfoil shown in Fig. 1.1.

Streak lines. In many cases of experimental flow visualization, particles
(e.g., dye, or smoke) are introduced into the flow at a fixed point in space. The
line connecting all of these particles is called a streak line. To construct streak
lines using the Lagrangian approach, draw a series of pathlines for particles
passing through a given point in space and at a particular instant in time,
connect the ends of these pathlines.

Streamlines. Another set of curves can be obtained (at a given time) by lines
that are parallel to the local velocity vector. To express analytically the
equation of a streamline at a certain instant of time, at any point P in the fluid,
the velocity* ¢ must be parallel to the streamline element dl (Fig. 1.3).
Therefore, on a streamline:

gxdl=0 (1.5)

Streamline

FIGURE 1.3
Description of a streamline.

-y

* Bold letters in this book represent vectors.
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If the velocity vector is q = (u, v, w), th
, U, w), then the t i
reduces to the following scalar equations: vector equation (Eq- (1.9)

wdy —vdz=0
udz—wdx=0 (1.6)
vdx —udy =0
or in a differential equation form:
dx_dy_dz
n oo W (1.6a)

of ti HIIZ EI-(II. (1.6a), the velocity (u, v, w) is a function of the coordinates and
. However, for steady flows the streamlines are independent of time

and streamlines, pathlines, and i i i
and p , streak lines become identical, as shown in Fig.

1.4 FORCES IN A FLUID

:r;i(l)lri dtc:3 l(::scustsinl% thlfj (li)ynamics of fluid motion, the types of forces that act on
ment should be identified. Here, forces s
. s uch as body forc i
mass f, and surface forces that ar . il be
£, ¢ a result of the stress vector t wi
. will be
;:I(I)ntslllc‘laer:ls.eThtf: body‘ for‘ces are independent of any contact with the fluid, as
of gravitational or magnetic forces i i ,
- > a .
proportional to the local mass. e thelr magnitude s
lana’rl‘o deﬁ;e the stress vector t at a point, consider the force F acting on a
p area S (shown in Fig. 1.4) with n being an outward normal to S. Then

. (F
t=lim (—)
S$—0 S
I .
n order to obtain the components of the stress vector, consider the force

equilibrium on an infinitesimal tetrahedral fluid element, shown in Fig. 1.5

3
t,'= Ti'n' | =

gl o i=1,2,3 1.7)
FIGURE 14

Force F acting on a surface S.
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FIGURE 1.5
Tetrahedral fluid element.

where the subscripts 1, 2 and 3 denote the three coordinate directions. A
similar treatment of the moment equilibrium results in the symmetry of the
stress vector components so that 7; = Tj;.

These stress components T; are shown schematically on a cubical element
in Fig. 1.6. Note that 7,; acts in the x; direction on a surface whose outward
normal points in the x; direction. This indicial notation allows a simpler
presentation of the equations and the subscripts 1, 2, and 3 denote the
coordinate directions x, y, and z, respectively. For example,

X=X X, =Y X3=2

and
qQ=u q=v q:=Ww

The stress components shown on the cubical fluid element of Fig. 1.6. can be

Z
h T2

- 2
sz/
Ty

Tu T

p2s T” L-—»

Tax y

FIGURE 1.6

Stress components on a cubical fluid element.
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summarized in a matrix form or in an indicial form as follows:

Txx txy Txz \ . Tiu Tz T3
Tye Ty Ty =0 Tn T2 T23 |57y (1.8)
Tox 1"zy L773 T3 T3z T33

Also, it is customary to sum over any index that is repeated, such that
3
i—g T,'jnj = T,-jnj fOI‘ l = 1, 2, 3 (19)

and to interpret an equation with a free index (as i in E i i
for all values of that index. (as tin Bq. (1.9)) as being vald

For a Newtonian fluid (where the stress components 7; are linear in the

derivatives 3q;/9x;), the stress components are rel i
_ i , ated to th
(see, for example, Batchelor,'! p. 147) © velocity field by

_ g, 3q; dq;
w=(-p - u(GEe ) (1.10)
f i

where u is the viscosity coefficient, p i i
\ , p is the pressure, the dummy variable & is
summed from 1 to 3, and §; is the Kronecker delta function defined by

6,‘,‘ = {l l ~J
0 i#j
When the fluid is at rest, the tangential stresses vanish and the normal

-p 0 0
T,‘j = O —p 0 (1.11)
0O 0 -—p

Another interesting case of Eq. (1.10) is the on

: (1. e-degree-of-freedom shear
flow.between a stationary and a moving infinite plate with a speed U, (shown
in Fig. 1.7), without pressure gradients. This flow is called Couette flow (see

Z 4\
Solid boundaries
[117040 Y108/ 00000000 EST

A

h Fluid
] .
J77777 7T TR 7777777777777 > FIGURE 1.7
Noai 3 Flow between a stationary (lo-
o-slip condition wer) and a moving (upper) plate.
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for example, Yuan,'? p. 260) and the shear stress becomes

ou _pUe

— 1.12
i (1.12)

tXZ
Since there is no pressure gradient in the flow, the fluid motion in the x
direction is entirely due to the action of the viscous forces. The force F on the
plate can be found by integrating 7,, on the moving upper surface.

1.5 INTEGRAL FORM OF THE FLUID
DYNAMIC EQUATIONS

To develop the governing integral and differential equations describing the
fluid motion, the various properties of the fluid are investigated in an arbitrary
control volume that is stationary and submerged in the fluid (Fig. 1.8). These
properties can be density, momentum, energy, etc., and any change with time
of one of them for the fluid flowing through the control volume is the sum of
the accumulation of the property in the control volume and the transfer of this
property out of the control volume through its boundaries. As an example, the
conservation of mass can be analyzed by observing the changes in fluid density
p for the control volume (c.v.). The mass m,, within the control volume is

then:
me.. =j pdV (1.13)

where dV is the volume element. The accumulation of mass within the control

volume is
om., 0O

== v .
Y % Lv. pd (1.13a)

The change in the mass within the control volume, due to the mass
leaving (M) and to the mass entering (m;,) through the boundaries (c.s.) is:

Mow—mia= | p(a-m)dS (114)

c.s.
(g'm)

FIGURE 1.8
A control volume in the fluid.
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where q is the velocity vector (u, v, w) and pq-n is the rate of mass leaving
across a}nd normal to the surface element dS (n is the outward normal), as
shown in Fig. 1.8. Since mass is conserved, and no new material is be,in

produced, then the sum of Eq. (1.13a) and Eq. (1.14) must be equal to ze:ro:g

dmc.v, _ a
“ar —a—tfc_u_pdV+L.p(q-n)dS=0 (1.15)

Equation (1.15) is the integral representation of the conservation of
mass. It' simply states that any change in the mass of the fluid in the control
volume is equal to the rate of mass being transported across the control surface
(c.s.) boundaries.

'In a similar manner the rate of change in the momentum of the fluid
flowing thr.ough the control volume at any instant d(mq).. ., /dt is the sum of the
accumulation of the momentum per unit volume pq within the control volume
and of the change of the momentum across the control surface boundaries:

d(mq)... _ 38
dt ot f pqdv + f pq(q-m)dS (1.16)

Th,is change in the momentum, as given in Eq. (1.16), according to
Newton’s second law must be equal to the forces ¥ F applied to the fluid inside
the control volume:

d(mq)....
P > F (1.17)
The forces acting on the fluid in the control volume in the x; direction are

e{ther boc!y force:s pf; per unit volume, or surface forces n;7; per unit area, as
discussed in Section 1.4: ,

(2 F)i = f of. dV + f n;t; dS (1.18)

where n is the unit normal vector that poi
unit points outward from the control volume.
By substituting Egs. (1.16) and (1.18) into Eq. (1.17), the integral form
of the momentum equation in the i direction is obtained:

3
£y f P4 dv + f pqi(q-n)dS = f _pfdv+ f nt;dS  (1.19)

This approach can l?e used to develop additional governing equations,
;ugh as thgdenergy equation. However, for the fluid dynamic cases that are
eing considered here, the mass and the momentum equati i
. . , ations are sufficie
describe the fluid motion. ! e
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1.6 DIFFERENTIAL FORM OF THE
FLUID DYNAMIC EQUATIONS

Equations (1.15) and (1.19) are the integral forms of the conservation of mass
and momentum equations. In many cases, though, the differential repre-
sentation is more useful. In order to derive the differential form of the
conservation of mass equation, both integrals of Eq. (1.15) should be volume
integrals. This can be accomplished by the use of the divergence theorem (see
Kellogg,"* p 39) which states that for a vector q:

J n-qu=[ vV-qdV (1.20)

c.v.

If q is the flow velocity vector then this equation states that the fluid flux
through the boundary of the control surface (left-hand side) is equal to the rate
of expansion of the fluid (right-hand side) inside the control volume. In Eq.
(1.20), V is the gradient operator, and, in cartesian coordinates, is
2 3 3
V=i—+j—+k—
dx "9y oz
or in indicial form
3
V = e,- -
ox;
where e; is the unit vector @,j.k, forj=1,2, 3). Thus the indicial form of the
divergence theorem becomes

aq;
J'm_ n;q; dS = LU. é—x—; av (1.20a)

An application of Eq. (1.20) to the surface integral term in Eq. (1.15)
transforms it to a volume integral:

I p(q-m)dS= J (V- pq)dV

This allows the two terms to be combined as one volume integral:

op )
P L v.pq)dV =0
Lu<a pa

where the time derivative is taken inside the integral since the control volume
is stationary. Because the equation must hold for an arbitrary control volume
anywhere in the fluid, then the integrand is also equal to zero. Thus, the
following differential form of the conservation of mass or the continuity
equation is obtained:

9p

__+V- =0 1.21
o Pq (1.21)
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Expansion of the second term of Eq. (1.21) yields

-—ap +q-V
Pyl & p+pV-q=0 (1.21a)
and in cartesian coordinates:

9p dp 9 3
bt od P _P_‘_p(%_}’@ Gw)

+tu—+v—+ — )=
a5 T )70 (1.216)
By using the material derivative
D 94 3 3 3 3
—=—+4+ . V =—4u— —_— —
D o VT a eV T
Eq. (1.21) becomes
Doy v
Dt pV-q=0 (1.21¢)

The material derivative D/Dt re
‘ presents the rate of change followi i
particle. For example, the acceleration of a fluid particle isggiven bymg i

_Dq_9q
= T a1 Ve (1.22)

An mcompr.essible fluid is a fluid whose elements cannot experien
vo!ume change. Since by definition the mass of a fluid element is constint tlcle
fluid elements' of an incompressible fluid must have constant densit ’ (1:
hompggneous mpompressible fluid is therefore a constant-density fluid );Th
continuity equation (Eq. (1.21)) for an incompressible fluid reduces to . ‘

ox dy oz 0 (1.23)

g‘(,)et: (t‘l)la: :pe in(;vompx('iessible continuity equation does not have time deriva-

ut time dependency can be introduced via time-
conditions) ia time-dependent boundary
To obtain the differential form of the momentum equation, the diver-

ence the i i .
%1. 19): orem, Eq. (1.20a), is applied to the surface integral terms of Eq.

V-q

fc pq.-(q-n)dS=f V-pqqdV

f an,’j ds = f Z—;’I dv
c.s. c.v. g

Substituting these results into Eq. (1.19) yields

f [g(pqi)+V-pq~q—pf—iri’]dV—0
v LOt ‘ r™ = (1.24)
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Since this integral holds for an arbitrary control volume, the integrand must
be zero and therefore

a8 ot:;
9 (0a)+V - 0g.q = pf, + —2 i=1,2,3 1.25
at(pq,) 0q:9 = pf; ox, @ ) (1.25)

Expanding the left-hand side of Eq. (1.25) first, and then using the continuity
equation, will reduce the left-hand side to

3 ap ] [aq,. ] Dg;
—_ . . . =a.\|—+ . “+ — 4 . V ] = _
5P +V (rq:9) q.[ RN IR PRl A Py

(Note that the fluid acceleration is
Dgq;

a;, = —_—
Dt
which according to Newton’s second law when multiplied by the mass per

volume must be equal to ¥ F.)
So, after substituting this form of the acceleration term into Eq. ( 1.25),

the differential form of the momentum equation becomes pa; = Y. For
Dq i 3 Tij .
—=pfi+—— =123 1.26
P =P 5%, (@ ) (1.26)

and in cartesian coordinates:

du du Su 8u> ot ot o1,
ML v ZErw—)=2 FE=pf+ 2y — Xy 2 (1.26a
p( ot “ox v 3y > 2 ot ox ay 3z ( )
v v v v dt,, 091, It
N v rw—)=2F=pf+ oy 2y 2 (1.26b
p( ot “ox v 3y it az) 2 E=rh 8x 9y 9z ( )
ow  ow aw 3t,, 9Ty,

ow ot
ow, w oW, O S Epf+ e 4 (126
p(at “ax TV %y Waz> SE=eft5it 50t )

For a Newtonian fluid the stress components -7; are given by Eq. (1.10), and by
substituting them into Eqgs. (1.26a—c), the Navier—Stokes equations are

obtained:
aq; ) a 5 3 <8q,~ aq,-)
o4 Oa Y= of —— (p+2uV-qQ+—u\5 t5_ 1.27
p( 5 T4V of; ax,-(p 5uV - q) a5, "\ oy, o (1.27)
(i=1,23)

and in cartesian coordinates:

du ap @ du 9 du v
o 22 ol b )
p(8t+q u)=ph=5 5 H2a  VD) oy 1M ey e

o Aw du
. ow  du 1.27
3z [” ( % az)] (1.27a)
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qn

q:
W FIGURE 1.9
Direction of tangential and normal velocity com-

ponents near a solid boundary.

v op & ov
ewn) -3 3ol 2D
ot Y 3y 9y # dy 3(V-9q) oz M az+8y)

+_‘9_[ (%+@
ax LM 3y ax)] (1.276)
w a 3 a
o2 q )=t~ 2 222 i g} 2 [u( 2 2
ot 1 ot dz 0oz ”Zaz 39 +8x ”5*’52)]
+i[ (@Jrf?!
dy M5z ay)] (1.27¢)

Typical boundary conditions for this problem require that on stationary

solid boundaries (Fig. 1.9) both the normal and t ; :
will reduce to zero: and tangential velocity components

q,=0  (on solid surface) (1.28a)
q,=0 (on solid surface) (1.28b)

X The number of exact solutions to the Navier—Stokes equations is small
ecause of the nonlinearity of the differential equations. However, in many
situations some terms can be neglected so that simpler equations can be

obtained. For example, by assuming co o X
becomes y g constant viscosity coefficient u, Eq. (1.27)

oq
%4, o .vq) = of— M
p(a:“‘ V“)‘pf Vp+uVq+V(V-q) (1.29)

Furthermore, by assuming an incom i i i
Fu re, pressible fluid (for which th
continuity equation (Eq. (1.23)) is V- q=0), Eq. (1.27) reducc(as to )

9q
p( Py +q-Vq)=pf—Vp + uViq (1.30)
For an inviscid compressible fluid:
9q Vp
5 A va=t-— (1.31)

This equation is called the Euler equation.
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FIGURE 1.10
x Cylindrical coordinate system.

In situations when the problem has cylindrical or spherical symmetry, the
use of appropriate coordinates can simplify the solution. As an example, the
fundamental equations for an incompressible fluid with constant viscosity are
presented. The cylindrical coordinate system is described in Fig. 1.10, and for
this example the r, 8 coordinates are in a plane normal to the x coordinate.
The operators V, V> and D/Dt in the r, 6, x systems are (see Pai,'* p.38 or

Yuan,'? p. 132)
5 13 a>
e eg-—, €, — 1.32
v (e'ar’e"rae’e‘ax (1.32)
82'+1£+li al
or* ror r*ae* ax?
D 8, 3,439 3

—_— + — x_.
oot 45 e Tax

V2= (1.33)

(1.34)

The continuity equation in cylindrical coordinates for an incompressible
fluid then becomes

3q, 1390 , 94x 4
-4 —+—=0 1.35
or +r 96 ox r ( )

The momentum equation for an incompressible fluid is

r direction:
Dq, qé)- _@. ( 2 __q_’__z__a_q_‘i) 1.3
p(Dt_r = ar+qu, rr rtae (1.36)
@ direction:
Dgs w)_ _1or ( 2 zéq_r_@) 137
p( Dt+ r = plo r80+” Vq9+r286 r? (1.37)
x direction:
Dq, g
p Dqt =pfx—-a§+uvzq, (1.38)
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e |

x=rcosB
y=rsin8cos¢e
z=rsinBsing

FIGURE 1.11
x Spherical coordinate system.

‘ A spherical coordinate system with the coordinates r, 6, @ is described in
Fig. 1.11. The operators V, V> and D/Dt in the r, 6, ¢ system are
(Karamcheti,* chapter 2, or Yuan,'? p. 132)

V=<e3 19 o1 3)
"or’ °ro8’ ®rsin 03¢ (1.39)
120 3 1 2] 3 1 ?
Fek3(3) aenon 03 e
el Ulew) g e ey CLL Y Repecy Pt SRR GRS

D 2@ 3
Dt ot dr r 36 rsinfdg

‘ The continuity equation in spherical coordinates for an incompressible
fluid becomes (Pai,"* p. 40)

la(fzqr)+ 1 a(q@sinﬂ)+ 1 %=

(1.41)

r or sin 0 36 sin 8 3¢ (1.42)
The momentum equation for an incompressible fluid is (Pai,"* p. 40):
r direction:
(Ba: gﬂ_) —of P
Dt r " or
2q, 29q¢ 2gocotl 2 3
(g2 22 o0 2 o)
MY~ 725 7 s ag) P
6 direction:
Dqo 4,96 9q%cot 8) 13p
+5=— =pfo — -
( Dt r r Pl r o6
29q qe 2cos 8 9q
+ (V2 +S5—,— - —"’)
Mo+ 536~ e rsmoog)
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__ FIGURE 1L.12

-

+  Two-dimensional polar coordinate system.

@ direction:

D to 1 3
p( qcp + qtpqr+ qeqtp co ) — f(p — - _p_
Dt r r rsin 8 3@
2 dq, 2cos8 94

%, %4e) (1.45
r’sin 6 3¢ rzsinz()atp) (1.45)

q
+ VZ e 4
" ( 9~ 12 sin2 6

When a two-dimensional flow field is treated in this text, it will be
described in either a cartesian coordinate system with coordinates x and z or in
a corresponding polar coordinate system with coordinates r and 6 (see Fig.
1.12). In this polar coordinate system, the continuity equation for an
incompressible fluid is obtained from Eq. (1.35) by eliminating 3q,/9x and the
r- and 6-momentum equations for an incompressible fluid are identical to Eqgs.

(1.36) and (1.37), respectively.

1.7 DIMENSIONAL ANALYSIS OF THE
FLUID DYNAMIC EQUATIONS

The governing equations that were developed in the previous section (e.g., Eq.
(1.27)) are very complex and their solution, even by numerical methods, is
difficult for many practical applications. If some of the terms causing this
complexity can be neglected in certain regions of the flow field, while the
dominant physical features are still retained, then a set of simplified equations
can be obtained (and probably solved with less effort). In this section, some of
the conditions for simplifying the governing equations will be discussed.

In order to determine the relative magnitudes of the various elements in
the governing differential equations, the following dimensional analysis is
performed. For simplicity, consider the fluid dynamic equations with constant
properties (u = const., and p = const.):

v.q=0 (1.23)

o
p<3?+q.vq>=pf-Vp+uV2q (1.30)

The first step is to define some characteristic or reference quantities, relevant
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to the physical problem to be studied:

L Reference length (e.g., wing’s chord)

V  Reference speed (e.g., the free stream speed)

T  Characteristic time (e.g., one cycle of a periodic process, or L/V)
po  Reference pressure (e.g., free stream pressure, p..) ’

fo Body force (e.g., magnitude of earth’s gravitation, g)

With the aid of these characteristic iti
' . quantities we can define i
nondimensional variables: the following

. X y z
x¥=— = * —
L L *°7L
u v w
u*=— v*¥=— *=—
v v YTy
:*—i

T (1.46)
p*=£

Do
gt

fo

If these characteristic magnitudes are

' ; ‘ properly selected, then all the non-
dlmegsmnal values in Eq. (1.46) will be of the order of 1. Next, the governing
equations need to be rewritten using the quantities of Eq. (1.46). As an
example, the first term of the continuity equation becomes

%_ du Ju* ax*_V du*
3x Ou* ox* ox ‘Z(ax*>

and the transformed incompressible continuity equation is

|4 <8u* ov* ow*
A 82*)=0 (1.47)
After a similar treatment, te nomentum equation ‘n the x direction becomes

p(!@u* V ,out V _ou* V*au*>

+V—u +V—v* -
Tor VLY e VI o TV LY o

&)QL*_*_ v <82u* *u* u*
Lo Pre\amtae™ az*2> (1.48)
The corresponding equations in the irecti

y and z directions can be obtained by the
same procedure. Now, by multiplying Eq. (1.47) by L/V and Eq. (1.4g) by

= pfofx —
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L/pV? we end up with
iu_* + v* + aw*
ax*  ody* 9z* -

L\ ou* qu* du* du* _(Lfy po \ 9p*
tur vt Wt =(—):—(——>——
( >8t* etV eyt Y s\ fe=\ove) o
+( u )(82u*+82u*+82u*
pVL/\ax** " gy**  8z**

If all the nondimensional variables in Eq. (1.46) are of order 1, then all terms
appearing with an asterisk (*) will also be of order 1, and the relative
magnitude of each group in the equations is fixed by the nondimensional
numbers appearing inside the parentheses. In the continuity equation (Eq.
(1.49)), all terms have the same order of magnitude and for an arbitrary
three-dimensional flow all terms are equally important. In the momentum
equation the first nondimensional number is

L
Q=— 1.51
- (1.51)
which is a time constant and signifies the importance of time-dependent
phenomena. A more frequently used form of this nondimensional number is
the Strouhal number where the characteristic time is the inverse of the
frequency w of a periodic occurrence (e.g., wake shedding frequency behind a

separated airfoil),

0 (1.49)

vV

) (1.50)

L__oL
(1/w)V Vv

If the Strouhal number is very small, perhaps due to very low frequencies, then
the time-dependent first term in Eq. (1.50) can be neglected compared to the
terms of order 1.

The second group of nondimensional numbers (when gravity is the body
force and f, is the gravitational acceleration g) is called the Froude number,
and stands for the ratio of inertial force to gravitational force:

(1.52)

14
F _m (1.53)

Small values of F (note that F~2 appears in Eq. (1.50)) will mean that body
forces such as gravity should be included in the equations, as in the case of free
surface river flows, waterfalls, ship hydrodynamics, etc.

The third nondimensional number is the Euler number, which represents
the ratio between the pressure and the inertia forces:

Eu =-2° (1.54)
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A freq_uently used q}xantity that is related to the Euler number is the pressure
coefficient C,, which measures the nondimensional pressure difference
relative to a reference pressure py: ’
P —Po
C. =

VT (1.55)
. Thc? last noqdimensional group in Eq. (1.50) represents the ratio between

the inertial and viscous forces and is called the Reynolds number:

pVL VL
Re=—=—
u . (1.56)
where v is the kinematic viscosity
v=FE 1.57
o (1.57)

For the flow of gases, from the kinetic theory point of view (see Yuan,'?
p- 257) the viscosity can be connected to the characteristic velocity of t,he
molecules ¢ and to the mean distance A that they travel between collisions
(mean free path), by
A
u=p 3

Substituting this into Eq. (1.56) yields:

re=(2)(3)

c/\A

This form_ulation shows that the Reynolds number represents the scaling of the
velocity-times-length, compared to the molecular scale.

. The ‘condmons for neglecting the viscous terms when Re>>1 will be

discussed in more detail in the next section.
For simplicity, at the beginning of this analysis an incompressible fluid
was assumed. However, if compressibility is to be considered, an additional

nopdimensional number appears that is called the Mach number, and is the
ratio of the velocity to the speed of sound a:

|4
M=—
4 (1.58)
N(;te that the Euler number can be related to the Mach number since
p/p ~ a* (see also Section 4.8).
Density changes caused by pressure changes are negligible i
Karamcheti,'” p. 23) ® neghigible 11 (sce
M? M?
M < — —
<1 72 «1 Re «1 (1.59)

and if these conditions are met, an incompressible fluid can be assumed.
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1.8 FLOW WITH HIGH REYNOLDS
NUMBER

The most important outcome of the nondimensionalizing process of t‘he
governing equations is that now the relative magnitude of the terms appearing
in the equations can be determined and compared. If desired, small terms can
be neglected, resulting in simplified equations that are easier to solve but still
contain the dominant physical effects.

In the case of the continuity equation all terms have the same magnitude
and none is to be neglected. For the momentum equation the relative
magnitude of the terms can be obtained by substituting Eqgs. (1.51-1.56) into
Eq. (1.50), and for the x direction we get

ou* du* , ou* , ou*

1 ap
* ={— :—Eu
Qo e T T o (Fz)f ox"

1\/3u* Ju* 82u*>
— + + 1.60
* (Re)(&x*z ay*?  az*? (1.60)

*

Before proceeding further, let us examine the range of Reynolds number and
Mach number for some typical engineering problems. Since the viscosity of
typical fluids such as air and water is very small, a large variety of prgctical
engineering problems (aircraft low-speed aerodynamics, hydrodynamics of
naval vessels, etc.) fall within the Re >> 1 range, as shown in Fig. 1.13. So for
situations when the Reynolds number is high, the viscous terms become small
compared to the other terms of order 1 in Eq. (1.60). But before neglecting

h 2
1001 vy = 1.5 x 105 [ 22 ]
At 29°C m?
Vaer = 1.0 x 107¢ [5&}
10
-
M
17 st
G.A. Transport
Insects %
— ¥ C:;o P NN,
T —N\— l2 T T T T T —>
1 10 10} 10% 10° 100 107 108
Re
‘CreepingV‘ Viscous N Turbulent
flow laminar flow
flow
FIGURE 1.13

Range of Reynolds number and Mach number for some typical fluid flows.
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Viscous effects are not
negligible (V2q > 1)

2,
—_—
~
~
—_ ~
/ T~ A
— ~
~
Viscous effects are ~
negligible (u¥2q < 1) ~
N
FIGURE 1.14

Flow regions in a high Reynolds number flow.

these terms, a closer look at the high Reynolds number flow condition is
needed. As an example, consider the flow over an airfoil, as shown in Fig.
1.14. In general, based on the assumption of high Reynolds number the
viscous terms of Eq. (1.60) (or 1.30) can be neglected in the outer flow regions
(outside the immediate vicinity of a solid surface where V’q=order 1).
Therefore, in this outer flow region, the solution can be approximated by
solving the incompressible continuity and the Euler equations:

V-q=0 (1.61)

3q Vp
3t +q-Vq=f1 o (1.62)
Equation (1.62) is a first-order partial differential equation that requires a
boundary condition on one velocity component on a solid surface compared to
a boundary condition on the velocity vector needed for Eq. (1.30) in the
previous section. Since the flow is assumed to be inviscid, there is no physical
reason for the tangential velocity component to be zero on a stationary solid
surface and therefore what remains from the no-slip boundary condition (Eq.
(1.28a, b) is that the normal component of velocity must be zero

q.=0 (on solid surface) (1.63)

However, a closer investigation of such flow fields reveals that near the solid
boundaries in the fluid, shear flow derivatives such as V°q become large and
the viscous terms cannot be neglected even for high values of the Reynolds
number (Fig. 1.14). As an example, near the surface of a streamlined
two-dimensional body submerged in a steady flow in the x direction (with no
body forces) the Navier-Stokes equations can be reduced to the classical
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boundary-layer equations (see Schlichting,'® p. 131) where now x represents
distance along the body surface and z is measured normal to the surface. The
momentum equation in the x direction is

du du op u
L4 P 1.64
”(“ 8x+w82) ax Moz (1.64)

and in the normal, z direction:

0=- °p (1.65)
oz
So, in conclusion, for high Reynolds number flows there are two dominant
regions in the flowfield:

1. The outer flow (away from the solid boundaries) where the viscous effgcts
are negligible. A solution for the inviscid flow in this region provides
information about the pressure distribution and the related forces.

2. The thin boundary layer (near the solid boundaries) where the viscous
effects cannot be neglected. Solution of the boundary-layer equations will
provide information about the shear stress distribution and the related
(friction) forces.

For the solution of the boundary-layer equations, the no-slip boundary
condition is applied on the solid boundary. The tangential velocity profile
inside the boundary layer is shown in Fig. 1.14 and it is seen that as the outer
region is approached, the tangential velocity component becomes independent
of z. The interface between the boundary-layer region and the outer flow
region is not precisely defined and occurs at a distance 8, the boundary-layer
thickness, from the wall. For large values of the Reynolds number the ratio of
the boundary-layer thickness to a characteristic length of the body (a(? airfoil’s
chord, for example) is proportional to Re ' (see Schlichting,'® p.129).
Therefore, the normal extent of the boundary-layer region is negligible when
viewed on the length scale of the outer region.

A detailed solution for the complete flowfield of such a high Reynolds
number flow proceeds as follows:

1. A solution is found for the inviscid flow past the body. For this solutiqn the
boundary condition of zero velocity normal to the solid surface is applied at
the surface of the body (which is indistinguishable from the <?dge of the
boundary layer on the scale of the chord). The tangential \.'el(.)cqy
component on the body surface U, is then obtained as part of the ¥nv1sc1d
solution and the pressure distribution along the solid surface is then
determined.

2. Note that in the boundary-layer equations (Egs. (1.64) and (1.65)) the
pressure does not vary across the boundary layer and is said to be
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impressed on the boundary layer. Therefore, the surface pressure distribu-
tion is taken from the inviscid solution in (1) and inserted into Eq. (1.64).
Also, U is taken from the inviscid solution as the tangential component of
the velocity at the edge of the boundary layer and is used as a boundary
condition in the solution of the boundary-layer equations.

The solution for a high Reynolds number flow field with the assumption
of an inviscid fluid is therefore the first step towards the solution of the
complete physical problem. (Additional iterations between the inviscid outer
flow and the boundary-layer region in search for an improved solution are
possible and are discussed in Chapters 9 and 14.)

1.9 SIMILARITY OF FLOWS

Another interesting aspect of the process of nondimensionalizing the equations
in the previous section is that two different flows are considered to be similar if
the nondimensional numbers of Eq. (1.60) are the same. For most practical
cases, where gravity and unsteady effects are negligible, only the Reynolds and
the Mach numbers need to be matched. A possible implementation of this
principle is in water or wind-tunnel testing, where the scale of the model differs
from that of the actual flow conditions.

For example, many airplanes are tested in small scale first (e.g., 1/5th
scale). In order to keep the Reynolds number the same then either the
airspeed or the air density must be increased (e.g., by a factor of 5). This is a
typical conflict that test engineers face, since increasing the airspeed 5 times
will bring the Mach number to an unreasonably high range. The second
alternative of reducing the kinematic viscosity v by compressing the air is
possible in only a very few wind tunnels, and in most cases matching both of
these nondimensional numbers is difficult.

Another possibility of applying the similarity principle is to exchange
fluids between the actual and the test conditions (e.g., water with air where the
ratio of kinematic viscosity is about 1:15). Thus a 1/15-scale model of a
submarine can be tested in a wind tunnel at true speed conditions. Usually it is
better to increase the speed in the wind tunnel and then even a smaller scale
model can be tested (of course the Mach number is not always matched but for
such low Mach number applications this is less critical).
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PROBLEMS

1.1. The velocity components of a two-dimensional flow field are given by
x+y* -1 ]
(P +y*— 17 +4y*

u(x,y) = k[

= xy
v(x, y) - 2k[(xz +y2 — 1)2 + 4y2]

where k is a constant. Does this flow satisfy the incompressible continuity
equation?
1.2. The velocity components of a three-dimensional, incompressible flow are given by

u=2% v=-y w=—2z

Determine the equations of the streamlines passing through point (1,1, 1).
1.3. The velocity components of a two-dimensional flow are given by

u=tV_ Tk
X +y? X +y?

where k is a constant.
(a) Obtain the equations of the streamlines.
(b) Does this flow satisfy the incompressible continuity equation?

1.4. The two-dimensional, incompressible, viscous, laminar flow between two parallel
plates due to a constant pressure gradient dp/dx is called Poiseuille flow (shown in
Fig. 1.15). Simplify the continuity and momentum equations for this case and
specify the boundary conditions on the wall (at y = +h/2). Determine the velocity
distribution u(z) between the plates and the shearing stress

Su
1.(z=h/2)= —HS,

a h12
on the wall.
Z y4 Z Z L L
3 |
% ‘ . — 4(2)
X — _ _ _
X
h
2
y
7 Vi 77 Ve S 7
FIGURE 1.15

Two-dimensional viscous incompressible flow between two parallel plates.

CHAPTER

FUNDAMENTALS
OF INVISCID,
INCOMPRESSIBLE
FLOW

In Chapter 1 it was established that for flows at high Reynolds number the
effects of viscosity are effectively confined to thin boundary layers and thin
wakes. For this reason our study of low-speed aerodynamics will be limited to
flows outside these limited regions where the flow is assumed to be inviscid and
incompressible. To develop the mathematical equations that govern these
flows and the tools that we will need to solve the equations it is necessary to
study rotation in the fluid and to demonstrate its relationship to the effects of
viscosity.

It is the goal of this chapter to define the mathematical problem
(differential equation and boundary conditions) of low-speed aerodynamics
whose solution will occupy us for the remainder of the book.

21 ANGULAR VELOCITY, VORTICITY,
AND CIRCULATION

The arbitrary motion of a fluid element consists of translation, rotation, and
deformation. To illustrate the rotation of a moving fluid element, consider at
t=t, the control volume shown in Fig. 2.1. Here, for simplicity, an
infinitesimal rectangular element is selected that is being translated in the z =0
plane by a velocity (u, v) of its corner no. 1. The lengths of the sides, parallel

25
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ou
u+b; Ay

Tu Ay @ Tu + v Ax
ax

YA

~y

FIGURE 2.1
Angular velocity of a rectangular fluid element.

to the x and y directions, are Ax and Ay, respectively. Because of the velocity
variations within the fiuid the element may deform and rotate and, for
example, the x component of the velocity at the upper corner (no. 4) of the
element will be u + (du/dy) Ay, where higher-order terms in the small
quantities Ax and Ay are neglected. At a later time (e.g., t = ¢, + At), this will
cause the deformation shown at the right-hand side of Fig. 2.1. The angular
velocity component @, (note positive direction in the figure follows the
right-hand rule) of the fluid element can be obtained by averaging the
instantaneous angular velocities of the segments 1-2 and 1-4 of the element.
The instantaneous angular velocity of segment 1-2 is the difference in the
linear velocities of the two edges of this segment, divided by the distance (Ax):

v
. relative velocity ox v
| locity of tl1-2= = =—
Angular velocity of segmen radius Ax i
and the angular velocity of the 1-4 segment is
du
—(u+—A ) +
(“ ay Y)Y s
Ay Ay

The z component of the angular velocity of the fluid element is then the
average of these two components

0= H(2-2)
27 2\ax oy
The two additional components of the angular velocity can be obtained

similarly, and in vector form the angular velocity becomes

0=3VXq (2.1)
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It is convenient to define the vorticity § as twice the angular velocity.
t=20=Vxq (2.2)

In cartesian coordinates the vorticity components are

dy 0oz
du Jow
= =——— 2.2a
by = 2w, (82 ax) (2.22)
Cz 2 2 = (ﬁ - %)
ox OQy

Now consider an open surface S, shown in Fig. 2.2, which has the closed
curve C as its boundary. With the use of Stokes’ theorem (see Kellogg,'* p.
73) the vorticity on the surface S can be related to the line integral around C:

IVXq'ndS=It_,-ndS=§q'dl
S A C

where n is normal to S. The integral on the right-hand side is called the
circulation and is denoted by I,

rsj‘;cq - d (2.3)

This relation can be illustrated again with the simple fluid element of Fig. 2.1.
The circulation AT is obtained by the evaluation of the closed line integral of
the tangential velocity component around the fluid element. Note that the
positive direction corresponds to the positive direction of w.

3 ]
AI‘=§q-dl=qu+<v+—UAx)Ay—<u+—uAy)Ax—UAy
c ox dy

v Jdu
Z-_Z)AxaA =I . dS
(ax ay) Y SC

FIGURE 2.2
The relation between surface and line integrals.
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For the general three-dimensional case these conclusions can be summarized as

rs§cq-dl=Lqu-nds=L§-nds (2.4)

The circulation is therefore somehow tied to the rotation in the fluid
(e.g., to the angular velocity of a solid body type rotation). In Fig. 2.3 two
examples are shown to illustrate the concept of circulation. The curve C
(dashed lines) is taken to be a circle in each case. In Fig. 2.3a the flowfield
consists of concentric circular streamlines in the counterclockwise direction. It
is clear that along the circular integration path C (Fig. 2.3a) q and dl in Eq.
(2.3) are positive for all dl and therefore C has a positive circulation. In Fig.

Streamlines Streamlines

(b)

FIGURE 2.3
Flowfields with (a) and without (b) circulation.

2.3b the flowfield is the symmetric flow of a uniform stream past a circular
cylinder. It is clear from the symmetry that the circulation is zero for this case.

To illustrate the motion of a fluid with rotation consider the control
volume shown in Fig. 2.4a, moving along the path [. Let us assume that the
viscous forces are very large and the fluid will rotate as a rigid body, while
following the path /. In this case V X ¢ # 0 and the flow is called rotational. For
the fluid motion described in Fig. 2.4b, the shear forces in the fluid are
negligible, and the fluid will not be rotated by the shear force of the
neighboring fluid elements. In this case V X ¢ =0 and the flow is considered to
be irrotational.
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Rotational
motion

Irrotational
motion

(@ ®)

FIGURE 2.4
Rotational and irrotational motion of a fluid element.

2.2 RATE OF CHANGE OF VORTICITY

To obtain an equation that governs the rate of change of vorticity of a fluid
element, we start with the incompressible Navier-Stokes equations in cartesian
coordinates (Eq. (1.30)),

5q p

—+q-Vq=f-V=+vV? 1.30

PRl ML P q (1.30)
The convective acceleration term is rewritten using the vector identity

2

q-Vq=Vq7—q><?; (2.5)

Now take the curl of Eq. (1.30), with the second term on the left-hand side
replaced by the right-hand side of Eq. (2.5). Note that for a scalar A,
V x VA =0 and therefore the pressure term vanishes:

%—E’-Vx(qxt;)=fo+vV2§ (2.6)

To simplify the result, we use the following vector identity,
Vx(gXxt)=qV-E—q-VE+E-Vq—-LV-q (2.7)

along with the incompressible continuity equation and the fact that the
vorticity is divergence-free (note that for any vector A, V-V XA =0). If we
also assume that the body force acting is conservative ,irrotational, such as
gravity) then

Vxf=0
and the rate of change of vorticity equation becomes
DY 3%
—=—4q-VE=(-V 2
D ar q-VE=¢-Vq+v Vg (2.8)
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The inviscid incompressible version of the vorticity transport equation is then

D
25_t-vq 2.9)

For a flow that is two-dimensional, the vorticity is perpendicular to the flow
direction and Eq. (2.8) becomes

Dg

—=vV 2.10
== vV (2.10)
and for the two-dimensional flow of an inviscid, incompressible fluid
Dt
—= 2.11
Dt 2.11)

and the vorticity of each fluid element is seen to remain constant.

The vorticity equation (Eq. (2.8)) strongly resembles the Navier—Stokes
equation and for very high values of the Reynolds number it is seen that the
vorticity that is created at the solid boundary is convected along with the flow
at a much faster rate than it can be diffused out across the flow and so it
remains in the confines of the boundary layer and trailing wake. The fluid in
the outer portion of the flowfield (the part that we will study) is seen to be
effectively rotation-free (irrotational) as well as inviscid.

The above observation can be illustrated for the two-dimensional case
using the nondimensional quantities defined in Eq. (1.46). Then, Eq. (2.10)
can be rewritten in nondimensional form:

D C: — 1 *2 %
D~ R V*2g? (2.10a)

where the Reynolds number, Re, is defined in Eq. (1.56). Here a two-
dimensional flow in the x~y plane is assumed and therefore the vorticity points
in the z direction. The left-hand side in this equation is the rate at which
vorticity is accumulated, which is equal to the rate at which it is being
generated (near the solid boundaries of solid surfaces). It is clear from Eq.
(2.10a) that for high Reynolds number flows, vorticity generation is small and
can be neglected outside the boundary layer. Thus for an irrotational fluid Eq.
(2.2) reduces to
ow _dv u _ow dv du

=— = 2.12
ay 3z 9z ox ox Jdy (2.12)

2.3 RATE OF CHANGE OF
CIRCULATION: KELVIN'S THEOREM

Consider the circulation around a fluid curve (which always passes through the
same fluid particles) in an incompressible inviscid flow with conservative body
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forces acting. The time rate of change of the circulation of this fluid curve C is

given as
Dr_ b
- dl —§ -dl+ § — dl .

Dt Dt§ Dt (2.13)

Since C is a fluid curve, we have
Dq D
Dt ® and Dt di=dgq

and therefore
DT
—= -dl .
Dr Ca (2.14)

since the closed integral of an exact differential that is a function of the
coordinates and time only is $.q - dq= $-d(q*/2) =0. The acceleration a is
obtained from the Euler equation (Eq. (1.62)) and is

a=-V (E—) +f
P
Substitution into Eq. (2.14) yields the result that the circulation of a fluid curve
remains constant:
DT P
0=—§d(—>+§f-dl 2.15
Dt c \p c (2.15)

since the integral of a perfect differential around a closed path is zero and the
work done by a conservative force around a closed path is also zero. The result
in Eq. (2.15) is a form of angular momentum conservation and is known as
Kelvin’s theorem (after the British scientist who published his theorem in
1869), which states that: the time rate of change of circulation around a closed
curve consisting of the same fluid elements is zero. For example, consider zn
airfoil as in Fig. 2.5, which prior to t =0 was at rest and then at ¢ >0 was
suddenly set into a constant forward motion. As the airfoil moves through the

wakc

anrfml
U,
-— Wake

M_

D( Ar

FIGURE 2.5
Circulation caused by an airfoil after it is suddenly set into motion.
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fluid a circulation T,,n develops around it. In order to comply with Kelvin’s
theorem a starting vortex Iy, must exist such that the total circulation around
a line that surrounds both the airfoil and the wake remains unchanged:

DT _ rairt'oil + I-‘wake -

= 0 2.16
Dt At (2.16)

This is possible only if the starting vortex circulation will be equal to the
airfoil’s circulation, but its rotation will be in the opposite direction.

2.4 IRROTATIONAL FLOW AND THE
VELOCITY POTENTIAL

It has been shown that the vorticity in the high Reynolds number flowfields
that are being studied is confined to the boundary layer and wake regions
where the influence of viscosity is not negligible and so it is appropriate to
assume an irrotational as well as inviscid flow outside these confined regions.
(The results of Sections 2.2 and 2.3 will be used when it is necessary to model
regions of vorticity in the flowfield.)

Consider the following line integral in a simply connected region, along
the line C:

Jq-dl=J'udx+vdy+wdz (2.17)
C C

If the flow is irrotational in this region then udx +vdy +wdz is an exact
differential (see Kreyszig,”' p. 741) of a potential @ that is independent of the
integration path C and is a function of the location of the point P(x, y, z):

P
®(x,y,z)=| udx+vdy+wdz (2.18)
Ry

where P, is an arbitrary reference point. @ is called the velocity potential and
the velocity at each point can be obtained as its gradient

q=Vo (2.19)
and in cartesian coordinates
I SR
ox oy oz
The substitution of Eq. (2.19) into the continuity equation (Eq. (1.23))
leads to the following differential equation for the velocity potential

V.q=V-Vd =V (2.21)

(2.20)

which is Laplace’s equation (named after the French mathematician Pierre S.
De Laplace (1749-1827)). It is a statement of the incompressible continuity
equation for an irrotational fluid. Note that Laplace’s equation is a linear
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differential equation. Since the fluid’s viscosity has been neglected, the no-slip
boundary condition on a solid-fluid boundary cannot be enforced and only Eq.
(1.28a) is required. In a more general form, the boundary condition states that
the normal component of the relative velocity between the fluid and the solid
surface (which may have a velocity qz) is zero on the boundary:

n-(g—qz)=0 (2.22)
This boundary condition is physically reasonable and is consistent with the
proper mathematical formulation of the problem as will be shown later in the
chapter.

For an irrotational inviscid incompressible flow it now appears that the
velocity field can be obtained from a solution of Laplace’s equation for the
velocity potential. Note that we have not yet used the Euler equation, which
connects the velocity to the pressure. Once the velocity field is obtained it is
necessary to also obtain the pressure distribution on the body surface to allow
for a calculation of the aerodynamic forces and moments.

2.5 BOUNDARY AND INFINITY
CONDITIONS

Laplace’s equation for the velocity potential is the governing partial differential
equation for the velocity for an inviscid, incompressible, and irrotational flow.
It is an elliptic differential equation that results in a boundary-value problem.
For aerodynamic problems the boundary conditions need to be specified on all
solid surfaces and at infinity. One form of the boundary condition on a
solid—fluid interface is given in Eq. (2.22). Another statement of this boundary
condition, which will prove useful in applications, is obtained in the following
way.
Let the solid surface be given by

F(x,y,2,)=0 (2.23)

in cartesian coordinates. Particles on the surface move with velocity qz such
that~F remains zero. Therefore the derivative of F following the surface
particles must be zero:

(p) F=S+an-vF
i) .F =% qz°VF=0 (2.24)
Equation (2.22) can be rewritten as
q:-VF=gq-VF (2.25)
since the normal to the surface n is proportional to the gradient of F.
= VF
—IVFI (2.26)

If Eq. (2.25) is now substituted into Eq. (2.24) the boundary condition
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becomes

JoF DF
- VF=—=0 2.27
FPRl ML ly” (2.27)

At infinity, the disturbance q due to the body moving through a fluid that
was initially at rest decays to zero. In a space-fixed frame of reference tl?e
velocity of such fluid (at rest) is therefore zero at infinity (far from the solid
boundaries of the body):

tim q =0 (2.28)

2.6 BERNOULLIS EQUATION FOR THE
PRESSURE

The incompressible Euler equation (Eq. (1.31)) can be rewritten with the use
of Eq. (2.5) as

oq q p
D _gxt+V=f-V= (2.29)
7 9 L+V3 S p
For irrotational flow £ =0 and the time derivative of the velocity can be
written as

oq 9 (8d>>

—=—VOo=V|— 2.30

ot ot ve at (2.30)

Let us also assume that the body force is conservative with a potential E,
f=-VE (2.31)

If gravity is the body force acting and the z axis points upward, then E = —8z.
The Euler equation for incompressible irrotational flow with a conservative
body force (by substituting Egs. (2.30) and (2.31) into Eq. (2.29)) then
becomes

S ]
v(E+’l+q—+—)=0 2.32)
p 2 ot
Equation (2.32) is true if the quantity in parentheses is a function of time only:
2
p . q 0@
—+-+—=C( 2.33
E+ o4 % ® (2.33)

This is the Bernoulli (Dutch/Swiss mathematician, Daniel Bernoulli
(1700-1782)) equation for inviscid incompressible irrotational flow. A more
useful form of the Bernoulli equation is obtained by comparing the quantities
on the left-hand side of Eq. (2.33) at two points in the fluid, an aribtrary point
and a reference point at infinity, say. The equation becomes

2 2
P .9q 8<I>] [ P . 4 B(D]
“+-+—|=|E+=+-+— 2.34
[E+p+2 ot p 2 Oti. (234)
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If the reference condition is chosen such that E, =0, &, =const., and
¢ = 0 then the pressure p at any point in the fluid can be calculated from
p-—p_3® q°

S = TEtS (2.35)

If the flow is steady, incompressible but rotational the Bernoulli equation (Eq.
(2.34)) is still valid with the time-derivative term set equal to zero if the
constant on the right-hand side is now allowed to vary from streamline to
streamline. (This is because the product q X § is normal to the streamline dl
and their dot product vanishes along the streamline. Consequently, Eq. (2.34)
can be used in a rotational fluid between two points lying on the same
streamline.)

2.7 SIMPLY AND MULTIPLY
CONNECTED REGIONS

The region exterior to a two-dimensional airfoil and that exterior to a
three-dimensional wing or body are fundamentally different in a mathematical
sense and lead to velocity potentials with different properties. To point out the
difference in these regions, we need to introduce a few basic definitions.

A reducible curve in a region can be contracted to a point without leaving
the region. For example, in the region exterior to an airfoil, any curve
surrounding the airfoil is not reducible and any curve not surrounding it is
reducible. A simply connected region is one where all closed curves are
reducible. (The region exterior to a finite three-dimensional body is simply
connected. Any curve surrounding the body can be translated away from the
body and then contracted.) A barrier is a curve that is inserted into a region
but is not a part of the resulting modified region. The insertion of barriers into
a region can change it from being multiply connected to being simply
connected. The degree of connectivity of a region is n +1 where n is the
minimum number of barriers needed to make the remaining region simply
connected. For example, consider the region in Fig. 2.6 exterior to an airfoil.
Draw a barrier from the trailing edge to downstream infinity. The original
region minus the barrier is now simply connected (note that curves in the
region can no longer surround the airfoil). Therefore n =1 and the original
region is doubly connected.

Consider irrotational motion in a simply connected region. The circula-
tion around any curve is given by

r=<§q-d|=3§vq>-d|=§dq> (2.36)

Barrier

FIGURE 2.6
Flow exterior to an airfoil in a doubly connected region.
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FIGURE 2.7 i
Integration lines along a simply connected region.

With the use of Eqgs. (2.4) and with £ =0 the circulation is seen to be zero.
Also, since the integral of d® around any curve is zero (Eq. (2.36)), the
velocity potential is single-valued.

Now consider irrotational motion in the doubly connected region exterior
to an airfoil as shown in Fig. 2.7. For any curve not surrounding the airfoil, the
above results for the simply connected region apply and the circulation is zero.
Now insert a barrier as shown in the figure. Consider the curve that consists of
C, and C,, which surround the airfoil, and the two sides of the barrier. Since
the region excluding the barrier is simply connected, the circulation around
this curve is zero. This leads to the following equation:

B A
q-dl— q-dl+J q-dl+f q-di=0
C, (o A B

Note that the first term is the circulation around C, and the second is minus
the circulation around C,. Also, the contributions from the barrier cancel for
steady flow (since the barrier cannot be along a vortex sheet). The circulation
around curves C; and C, (and any other curves surrounding the airfoil once)
are the same and may be nonzero. From Eq. (2.36) the velocity potential is not
single-valued if there is a nonzero circulation.

2.8 UNIQUENESS OF THE SOLUTION

The physical problem of finding the velocity field for the flow created, say, by
the motion of an airfoil or wing has been reduced to the mathematical problem
of solving Laplace’s equation for the velocity potential with suitable boundary
conditions for the velocity on the body and at infinity. In a space-fixed
reference frame, this mathematical problem is

Vo =0 (2.37a)
ov_ n-qg on body (2.37b)
on

V-0 at r—>x (2.37¢)
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Since the body boundary condition is on the normal derivative of the
potential and since the flow is in the region exterior to the body, the
mathematical problem of Eqs. (2.37a, b, ¢) is called the Neumann exterior
problem. In what follows we will answer the question “is there a unique
solution to the Neumann exterior problem?”” We will discover that the answer
is different for a simply and multiply connected region.

Let us consider a simply connected region first. This will apply to the
region outside of a three-dimensional body but care must be taken in
extending the results to wings since the flowfield is not irrotational everywhere
(wakes). Assume that there are two solutions ®; and ®, to the mathematical
problem posed in Eqs. (2.37a, b, ). Then the difference

¢1-®ZE¢’D

satisfies Laplace’s equation, the homogeneous version of Eq. (2.37b), and Eq.
(2.37¢).

One form of Green’s (George Green, German mathematician, early
1800’s) theorem (Ref. 1.5, p. 135) is obtained by applying the divergence
theorem to the function @ V@ where @ is a solution of Laplace’s equation, R
is the fluid region and S is its boundary. The result is

P
f VCD-V<I>dV=f<I>—dS (2.38)
R S on
Now apply Eq. (2.38) to @y, for the region R between the body B and an

arbitrary surface Z surrounding B to get

v,
on

If we let 2 go to infinity the integral over Z vanishes and since
d¢p/0n =0 on B we are left with

oP
f Vd,, - Vb, dV = f o, das + f ®,—=>dS (2.39)
R B b an

I Vo, -VO,dV =0 (2.40)
R

Since the integrand is always greater than or equal to zero, it must be zero and
consequently the difference ®; — ®, can at most be a constant. Therefore, the
solution to the Neumann ex‘erior problem in a simply connected rco'cn i>
unique to within a constant

Consider now the doubly connected region exterior to the airfoil C in
Fig. 2.8. Again let @, and ®, be solutions and take

¢1_¢_=¢D

Green'’s theorem is now applied to the function @, in the region o between
the airfoil C and the curve X surrounding it. Note that the integrals are still
volume and surface integrals and that the integrands do not vary normal to the
plane of motion.
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FIGURE 2.8
Doubly connected region exterior to an airfoil.

Insert a barrier b joining C and £ and denote the two sides of the barrier
as b— and b+ as shown in the figure. Note that n is the outward normal to b—
and —n is the outward normal to b+. Equation (2.38) then becomes

8<I>D 8<I)D

S2dS—| ®p—-2dS (241)

b+

f o, <9<I>D 8<DD

The integral around C is zero from the boundary condition and if we let Z go
to infinity the integral around X is zero also. Let @5 be @, on b— and @} be
®,, on b+. Then Eq. (2.41) is
3Py ad;
f Vo, -Vo,dV=| dp—2dS—| ®h—"
o b— on b+ on
The normal derivative of ®, is continuous across the barrier and Eq. (2.42)
can be written in terms of an integral over the barrier:

(2.42)

3D,
f Vo, -V, dV = (®p — <I>D) 2d (2.43)

barrier

If we reintroduce the quantities ®; and ®, and rearrange the integrand we get

3y
f VO, - Vb, dV = (®F — ©F + DF — @7) a—nDdS (2.44)

barrier
Note that the circulations associated with flows 1 and 2 are given by
= o} - &7
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and are constant, and finally
3®;,
el 27

barrier on

f Vo, - Vb, dV = (T, —T}) (2.45)

Since in general we cannot require that the integral along the barrier be
zero, the solution to the Neumann exterior problem is only uniquely
determined to within a constant when T'; = I, (when the circulation is specified
as part of the problem statement). This result can be generalized for multiply
connected regions in a similar manner. The value of the circulation cannot be
specified on purely mathematical grounds but will be determined later on the
basis of physical considerations.

2.9 VORTEX QUANTITIES

In conjunction with the velocity vector, we can define various quantities such
as streamlines, stream tubes, and stream surfaces. Corresponding quantities
can be defined for the vorticity vector that will prove to be useful later on in
the modeling of lifting flows.

The field lines (e.g., in Fig. 2.2) that are parallel to the vorticity vector
are called vortex lines and these lines are described by

txdi=0 (2.46)

where dl is a segment along the vortex line (as shown in Fig. 2.9). In cartesian
coordinates, this equation yields the differential equations for the vortex lines:

dx_dy d
i (2.47)

L L &

The vortex lines passing through an open curve in space form a vortex
surface and the vortex lines passing through a closed curve in space form a
vortex tube. A vortex filament is defined as a vortex tube of infinitesimal
cross-sectional area.

The divergence of the vorticity is zero since the divergence of the curl of

T Positive direction
of ¢ FIGURE 2.9
Vortex line.
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S
S
FIGURE 2.10
S, Vortex tube.
any vector is identically zero:
V-E=V-VXxq=0 (2.48)

Consider, at any instant, a region of space R enclosed by a surface S. An
application of the divergence theorem yields

Lc-ndS=Lv-z;dv=0 (2.49)

At some instant in time draw a vortex tube in the flow as shown in Fig. 2.10.
Apply Eq. (2.49) to the region enclosed by the wall of the tube S,, and the
surfaces S; and S, that cap the tube. Since on S,, the vorticity is parallel to the
surface, the contribution of §,, vanishes and we are left with

fg.nds= 7;-ndS+j ¢-ndS=0 (2.50)
s 51 S

Note that n is the outward normal and its direction is shown in the figure. If we
denote m, as being positive in the direction of the vorticity, then Eq. (2.50)
becomes

jc-nvd5=f T-n, dS = const. (2.51)
5 S

At each instant of time, the quantity in Eq. (2.51) is the same for any
cross-sectional surface of the tube. Let C be any closed curve that surrounds
the tube and lies on its wall. The circulation around C is given from Eq. (2.4)
as

I'c= J’ £+ n, dS = const. (2.52)
S

and is seen to be constant along the tube. The results in Egs. (2.51) and (2.52)
express the spatial conservation of vorticity and are purely kinematical.

If Eq. (2.52) is applied to a vortex filament and m, is chosen parallel to
the vorticity vector, then

I'c= £ dS = const. (2.53)

and the vorticity at any section of a vortex filament is seen to be inversely
proportional to its cross-sectional area. A consequence of this result is that a
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vortex filament cannot end in the fluid since zero area would lead to an infinite
value for the vorticity. This limiting case, however, is useful for the purposes
of modeling and so it is convenient to define a vortex filament with a fixed
circulation, zero cross-sectional area, and infinite vorticity as a vortex filament
with concentrated vorticity.

Based on results similar to those of Section 2.3 and this section, the
German scientist Hermann von Helmholtz (1821-1894) developed his vortex
theorems for inviscid flows, which can be summarized as:

1. The strength of a vortex filament is constant along its length.

2. A vortex filament cannot start or end in a fluid (it must form a closed path
or extend to infinity).

3. The fluid that forms a vortex tube continues to form a vortex tube and the
strength of the vortex tube remains constant as the tube moves about
(hence vortex elements, such as vortex lines, vortex tubes, vortex surfaces,
etc., will remain vortex elements with time).

The first theorem is based on Eq. (2.53), while the second theorem
follows from this. The third theorem is actually a combination of Helmholtz’s
third and fourth theorems and is a consequence of the inviscid flow assumption

(Eq. (2.9)).

2.10 TWO-DIMENSIONAL VORTEX

To illustrate a flowfield frequently called a two-dimensional vortex, consider a
two-dimensional rigid cylinder of radius R rotating in a viscous fluid at a
constant angular velocity of @,, as shown in Fig. 2.11a. This motion results in
a flow with circular streamlines and therefore the radial velocity component is
zero. Consequently the continuity equation (Eq. (1.35)) in the r-6 plane
becomes

99
e LN} 2.54
Integrating this equation results in
qo =qe(r) (2.55)

The Navier-Stokes equation in the r direction (Eq. (1.36)), after neglecting
the body force terms, becomes

2
J
—ple-_2E (2.56)
r or
Since g is a function of r only, and owing to the radial symmetry of the
problem the pressure must be either a function of r or a constant. Therefore,
its derivative will not appear in the momentum equation in the 6 direction
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Streamlines

rw,

() k g
FIGURE 2.11
Two-dimensional flowfield around a cylindrical core rotating as a rigid body.

(Eq. 1.37),
Fqe 19
0= ( 9, - 9%e gﬂ)
N2t e (2.57)
and since g, is a function of r only,
d’qe d(q
0=—22+—(2
ar? +dr< r ) (2.58)

Integrating with respect to r yields

where C, is the constant of integration. Rearranging this yields

1d
;a(’46)= C,
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and after an additional integration

Cl Cz

Qo =757 +T (2.59)

The boundary conditions are
go = —Rw, atr=R (2.60a)
qe=0 atr=o0 (2.60b)

The second boundary condition is satisfied only if C, =0, and by using the first
boundary condition, the velocity becomes
R*w,

Qo=—"1" (2.61)
From the vortex filament results (Eq. (2.53)), the circulation has the same sign
as the vorticity, and is therefore positive in the clockwise direction. The
circulation around the circle of radius r, concentric with the cylinder, is found
by using Eq. (2.3)

Ir= jo qor d6 =20,7R? (2.62)

25

and is constant. The tangential velocity can be rewritten as

r
=—-— 2.63
de 2 ( )

This velocity distribution is shown in Fig. 2.11b and is called vortex flow. If
r—0 then the velocity becomes very large near the core, as shown by the
dashed lines.

It has been demonstrated that T is the circulation generated by the
rotating cylinder. However, to estimate the vorticity in the fluid, the
integration line shown by the dashed lines in Fig. 2.1la is suggested.
Integrating the velocity in a clockwise direction, and recalling that ¢, =0,
results in

r
§q-dl=0-Ar+ (r+Ar)A0—O-Ar——2;rrA6=O

_r
27(r + Ar)

This indicates that this vortex flow is irrotational everywhere, except at the
core where all the vorticity is generated. When the core size approaches zero
(R— 0) then this flow is called an irrotational vortex (excluding the core point,
where the velocity approaches infinity).

The three-dimensional velocity field induced by such an element is
derived in the next section.
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2.11 THE BIOT-SAVART LAW

At this point we have an incompressible fluid for which the continuity equation
is

V-q=0 (1.23)

and where vorticity § can exist and the problem is to determine the velocity
field as a result of a known vorticity distribution. We may express the velocity
field as the curl of a vector field B, such that

q=VXB (2.64)

Since the curl of a gradient vector is zero, B is indeterminate to within the
gradient of a scalar function of position and time, and B can be selected such
that

V:-B=0 (2.65)
The vorticity then becomes
E=VXq=VX(VXB)=V(V-B)- VB

By applying Eq. (2.65) this reduces to Poisson’s equation for the vector
potential B:

=-vB (2.66)

The solution of this equation, using Green’s theorem (see Karamcheti,' p.
533) is

1 4
B=—f dv
47 Jy|ro—n|

Here B is evaluated at point P (which is a distance r, from the origin, shown in
Fig. 2.12) and is a result of integrating the vorticity § (at point r;) within the

FIGURE 2.12
o Velocity at point P due to a vortex
Origin distribution.
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FIGURE 2.13
The velocity at point P induced
by a vortex segment.

volume V. The velocity field is then the curl of B

=.1_jv>< S _av (2.67)
4n v Il'o_l'll

Before proceeding with this integration, let us consider an infinitesimal piege
of the vorticity filament ¢, as shown in Fig. 2.13. The cross section area das is
selected such that it is normal to § and the direction dl on the filament is

4
dl==dl
¢
Also the circulation I is
=¢ds
and
dv =dsdl
so that p
vV X § dv =V XT
[ro — x4l |ro — 1y}
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and carrying out the curl operation while keeping r, and dl fixed we get
dl _rdlx(fo-l'l)

vxr =
[ro — 1y Iro — 1,2

Substitution of this result back into Eq. (2.67) results in the Biot—Savart law
which states ’

FIML)

Tan 1 A (2.68)
or in differential form
Aq= L AX (1)
4 |ro—r1,f (2.68a)

A similar manipulation of Eq. (2.67) leads to the following result for the
velocity due to a volume distribution of vorticity:

_i EX(rp—r;)
=4, to—n1i[’ av (2.67a)

2.12 THE VELOCITY INDUCED BY A
STRAIGHT VORTEX SEGMENT

In this section, the velocity induced by a straight vortex line segment is
derived, based on the Biot—Savart law. It is clear that a vortex line cannot start
or end in a fluid, and the following discussion is aimed at developing the
contribution of a segment that is a section of a continuous vortex line. The
vortex segment is placed at an arbitrary orientation in the (x, y, z) frame with
constant circulation ', as shown in Fig. 2.14. The velocity induced by this

FIGURE 2.14

Velocity induced by a straight
X vortex segment.
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vortex segment will have tangential components only, as indicated in the
figure. Also, the difference ro — 1y between the vortex segment and the point P
is r. According to the Biot-Savart law (Eq. 2.68a) the velocity induced by a
segment dl on this line, at a point P, is

Ller

Aq= an (2.68b)
This may be rewritten in scalar form
Ago = %; S‘:‘f dl (2.68¢)
From the figure it is clear that
d=rcosf
I=dtanf  and dl=izdﬁ
cos” 8

Substituting these into Agg

T cos’B . d
Agg =‘—G 7 sin ﬁcoszﬂ

r .
dﬂ—ﬁsmﬂdﬁ

This equation can be integrated over a section (1—2) of the straight vortex
segment of Fig. 2.15

r (b r
(@602 =g |, S BB =75 (c0s B = cos ) 2.69)

The results of this equation are shown schematically in Fig. 2.15. Thus, the
velocity induced by a straight vortex segment is a function of its strength I, the

distance d, and the two view angles S;, B,.
For the two-dimensional case (infinite vortex length) B, =0, f,=m and

r (= r
=— in Bdf =— .70
Go=7rg | sinBB=5 270)
For the semi-infinite vortex line that starts at point O in Fig. 2.14, B, = /2
and B, = & and the induced velocity is

r

9o =4 2.71)

which is exactly half of the previous value.

Equation (2.68b) can be modified to a form that is more convenient for
numerical computations by using the definitions of Fig. 2.16. For the general
three-dimensional case the two edges of the vortex segment will be located by
r, and r, and the vector connecting the edges is

Ih=rL—n
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P(x,y,2)

Aqﬂr:

X

FIGURE 2.15 FIGURE 2.16
Definition of the view angles used for the N '
i . omenclature used for th ity i
vortex-induced velocity calculations. by a three-dimensionale ‘;f:z.céz m\?(;lr:::
segment.

as shown in Fig. 2.16. The distance d, and the cosines of the angles B are then
_InXn)
[ol
. rl

| ¢
Osﬂl el 0

el I
0s B, = To'f
The directi . ‘ ‘ |xo] I
o ; : l:;e‘? 01rot2xoe (;g:svle,l(;c;tquiléz glisv:rcl)rtr)r;al to the plane created by the point P
nXxr,
[ry Xy

and by substituting these quantities, and b iplyi i is di
‘ , y multiplying with th i
vector the induced velocity is prine s directional

2=

I' X, (rl r2> @)
= 72

- rO . — —
47 |1y X ryf? non

A more detailed procedure for using thi
' g this formula when the (x, y, z) val
the points 1, 2, and P are known is provided in Section 10.4.(5. ) 2) values of

2.13 THE STREAM FUNCTION

Congder two arbitrary.streamlines in a two-dimensional steady flow, as shown
in Fig. 2.17. The velocity q along these lines 1 is tangent to them

gXdl=udz—wdx=0 (1.5)
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FIGURE 2.17
Flow between two two-dimensional
X streamlines.

and, therefore, the flux (volumetric flow rate) between two such lines is
constant. This flow rate between these two curves is

B B
Flux = f g-ndl= f udz + w(—dx) (2.73)
A A

where A and B are two arbitrary points on these lines. If a scalar function
W(x, z) for this flux is to be introduced, such that its variation along a
streamline will be zero (according to Eq. (1.5)), then based on these two
equations (Eqgs. (1.5) and (2.73)), its relation to the velocity is

v _o¥

=— =—-— 2.74
Y v ox (2.74)
Substituting this into Eq. (1.5) for the streamline results in
v o
d¥V=—dx+—dz=—-wdx+udz=0 (2.75)
ox oz

Therefore, d¥ along a streamline is zero, and between two different
streamlines d¥ represents the volume flux (Eq. (2.73)). Integration of this
equation results in

W = const. on streamlines (2.76)
Substituting Egs. (2.74) into the continuity equation yields
8u+§|1)_ W _ 3w -0
ox 9z 0xdz dxdz

.77

and therefore the continuity equation is automatically satisfied. Note that the
stream function is valid for viscous flow, too, and if the irrotational flow
requirement is added then §, = 0. Recall that the y component of the vorticity
is

ou_w_
YT 8z Ox

\% 4
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and therefore for two-dimensional incompressible irrotational flow W satisfies
Laplace’s equation

VW =0 (2.78)
It is possible to express the two-dimensional velocity in the x—z plane as
v, v |
q= 3 i Ey k=jx vy
Thus
q=jxv¥ (2.79)

Using this method, the velocity in cylindrical coordinates (for the r—0) plane is
obtained:
o 1o¥ )

='x — —_
=] <8re'+r89e9

W 13¥

=——et-—e,

or r o6

and the velocity components are

9o=""75" (2.80a)
_1ow
=24 (2.80b)

The relation between the stream function and the velocity potential can
be found by equating the expressions for the velocity components (Eq. (2.20)
and Eq. (2.74)), and in cartesian coordinates:

3 ¥ b W

x oz 8z (2.81)
and in cylindrical coordinates
ob 15¥ 199 v
% ">Aa tEn= " A (2.82)

These are the Cauchy-Riemann equations with which the complex flow
potential will be defined in Chapter 6.
Laplace’s equation in polar coordinates, expressed in terms of the stream

function, is

F¥ 13¥ 1%

Vzlp =—4-— —_——

or* " ror +r2 06? 0 (2.83)
To demonstrate the relation between the velocity potential and the stream
function, recall that along a streamline

d¥=udz—wdx=0 (2.84)
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and similarly, along a constant potential line
db=udx+wdz=0 (2.85)

Since the slopes of the streamlines and the potential lines are negative
reciprocals, these lines are perpendicular to one another at any point in the

flow.
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PROBLEMS

2.1. Write the scalar version of the inviscid incompressible vorticity transport equation
in cylindrical coordinates for an axisymmetric flow.
2.2. Evaluate the boundary condition of Eq. (2.27) for a circle (and a sphere) whose
radius is varying such that r = a(t) in a fluid at rest at infinity.
2.3. (a) Consider an incompressible potential flow in a fluid region V with boundary S.
Find an equation for the kinetic energy in the region as an integral over S.

(b) Now consider the two-dimensional flow between concentric cylinders with
radii @ and b and velocity components g, =0 and g, = A/r (where A is
constant). Calculate the kinetic energy in the fluid region using the result from
(a).

2.4. (a) Find the velocity induced at the center of a square vortex ring whose
circulation is I" and whose sides are of length a.

(b) Find the velocity along the z axis induced by a circular vortex ring that lies in
the x—y plane, whose radius is a and circulation is I, and whose center is at
the origin of coordinates.

2.5. Find the stream function for a two-dimensional flow whose velocity components
are u =2Ax and w = —2Az.
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In the previous two chapters the fundamental fluid dynamic equations were
formulated and the conditions leading to the simplified inviscid, incompres-
sible, and irrotational flow problem were discussed. In this chapter, the basic
methodology for obtaining the elementary solutions to this potential flow
problem will be developed. Because of the linear nature of the potential flow
problem, the differential equation does not have to be solved individually for
flowfields having different geometry at their boundaries. Instead, the elemen-
tary solutions will be distributed in a manner that will satisfy each individual
set of geometrical boundary conditions.

This approach, of distributing elementary solutions with unknown
strength, allows a more systematic methodology for resolving the flowfield in
both of the cases of “classical” and numerical methods.

3.1 STATEMENT OF THE POTENTIAL
FLOW PROBLEM

For most engineering applications the problem requires a solution in a fluid
domain V that usually contains a solid body with additional boundaries that
may define an outer flow boundary (e.g., a wing in a wind tunnel), as shown in
Fig. 3.1. If the flow in the fluid region is considered to be incompressible and
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irrotational then the continuity equation reduces to
Vo =0 (3.1)

i i i t normal to the
bmerged body in the fluid, the velocity componen ‘
Eg(riy?s lellrfacegand to other solid boundaries must be zero, and in a body fixed
coordinate system:
Vo -n=0 (3.2)

Here n is a vector normal to the body’s surface, and VfD is measured in a l§ratmhe
of reference that is attached to the body. Also, the disturbance created by the

motion should decay far (r— ) from the body

lim (V® —v) =0 3.3)

i i i the undisturbed fluid
=(x, y, z) and v is the relative velocity between . :
th;rir:.d tl(le god))i (or the velocity at infinity seen by an observer moving with

the body).

3.2 THE GENERAL SOLUTION, BASED
ON GREEN'S IDENTITY

The mathematical problem of the previous section is. described schematically
by Fig. 3.1. Laplace’s equation for the velocity potential must be .solved for an
al)'lbitra.ry body with boundary S enclosed in(a 2\;olur(;1€(:3 ‘g,) w1t}l|y ttl(l)esozt:(?
ditions in Eqgs. (3.2) and (3.3) app Sp
boundary S... The boundary con ) IPPIY 10 s 8¢
i is defined such that it always points ou
S.., respectively. The normal n is e iveraoncs.thearem
i f interest V. Now, the vector appearing in

l(tg;mqoin Eq. (1.20)) is replaced by the vector <I>1V<I?2 - ®,VP,, where ®, and
<l>; a;e two scalar functions of position. This results in

f (le(bz - QZV(DI) ‘n dS = I ((DIVZQZ - ®2V2¢1) dV (3.4)
v
S

FIGURE 3.1 .
Nomenclature used to define the potential

flow problem.
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This equation is one of Green’s identities (Kellogg,' p. 215). Here the surface
integral is taken over all the boundaries S, including a wake model Sw (which
might model a surface across which a discontinuity in the velocity potential or
the velocity may occur).

S = SB + SW + sw
Also, let us set

(Dl == and ¢2 =¢ (3.5)

where @ is the potential of the flow of interest in V, and r is the distance from
a point P(x, y, z), as shown in the figure. As we shall see later, @, is the
potential of a source (or sink) and is unbounded (1/r— ) as P is approached
and r— 0. In the case where the point P is outside of V both @, and P, satisfy
Laplace’s equation and Eq. (3.4) becomes

1
f(—V¢—¢V1>-ndS=O (3.6)
s \I r

Of particular interest is the case when the point P is inside the region. The
point P must now be excluded from the region of integration and it is
surrounded by a small sphere of radius €. Qutside of the sphere and in the
remaining region V the potential ®, satisfies Laplace’s equation [V’(1/r)=0].
Similarly V*®, =0 and Eq. (3.4) becomes

1 1
f <~V(I>——<I>V—)-nds=0 (3.6a)
S +sphere € r r

To evaluate the integral over the sphere, introduce a spherical coordinate
system at P and since the vector m points inside the small sphere, n= —e,,
n-V® =—9®/5r and V(1/r) = ~(1/r*)e,. Equation (3.62) now becomes

160 @ 1 1
_f (__+_2>ds+[(—vq>—q>v—)-nds=o (3.6b)
sphere € \T' or r s\ r

On the sphere surrounding P, [ dS =4me® (where r =€), and as € =0 (and
assuming that the potential and its derivatives are well-behaved functions and
therefore do not vary much in the small sphere) the first term in the first
integral vanishes, while the second term yields

- -q-) dS = —4xP(P)
h r
sphere €

Equation (3.6b) then becomes
1 1 1
P)=— (— — v—)- ds 7
q>()4ﬂfsrvq>q>rn 3.7)

This formula gives the value of ®(P) at any point in the flow, within the region
V, in terms of the values of ® and d®/8n on the boundaries S.

GENERAL SOLUTION OF THE INCOMPRESSIBLE, POTENTIAL FLOW EQUATIONS §5

If, for example, the point P lies on the boundary Sy then in order to
exclude the point from V, the integration is carried out only around the
surrounding hemisphere (submerged in V) with radius € and Eq. (3.7)
becomes . . .

q>(P)=—j (—vq>—q>v—) ‘ndS (3.7a)
2x Jg \r r
Now consider a situation when the flow of interest occurs inside the bour}dary
of Sz and the resulting “internal potential” is ®;. For this flow tl_le point P
(which is in the region V') is exterior to S; and applying Eq. (3.6) yields

1 }
0=—1—f (1V(I>,-—<I>,-V—>-ndS — (3.7b)
4z Js, \r r

Here, m points outward from Sz. A form of Eq. (3.7) that includes the
influence of the inner potential, as well, is obtained by adding Eqs (3.7) and
(3.7b) (note that the minus sign is a result of the opposite direction of m for
d),'):

1 1 1
d>(P)=——I [—V(d)—d)i)—(d>—d>i)v— -ndS

4r r r

Sg

1
+—l—-j (lvq)—(DV—)-ndS (3.8)
4n Jsy s, \r r

The contribution of the S.. integral in Eq. (3.8) (when S.. is considered to be far
from Sg) can be defined as @.(£).

q>w(1>)=21;fs (%V<D—<I>V%>-nds (3.9)

This potential, usually, depends on the selection of the coordinate system aqd,
for example, in an inertial system where the body moves through an otherwise
stationary fluid ®.. can be selected as a constant in the region. Also, the wa}ce
surface is assumed to be thin, such that 3®/3dn is continuous across it (which
means that no fluid-dynamic loads will be supported by the wake). With these
assumptions Eq. (3.8) becomes

1 1 1] 1 1
= | [v@-0)-(@-®)V=|-ndS——| ®n-V-dS+®.(P)
op)=3- | [;v@-0)-@-o); e IR
(3.10)

As was stated before, Eq. (3.7) (or Eq. (3.10)) provides the value gf
®(P) in terms of ® and 3®/5n on the boundaries. Therefore, the prqblem is
reduced to determining the value of these quantities on the boundaries. For
example, consider a segment of the boundary S as shown in Fig. 3.2; then the
difference between the external and internal potentials can be defined as

—u=0-0, (3.11)
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P
an
S5
/ 0P,
an
n FIGURE 3.2
The velocity potential near a solid boundary S,.

and the difference between the normal derivative of the external and internal
potentials as

0P 9P,
o=————
oan on

These elements are called doublet (1) and source (o) and the minus sign is a
result of the normal vector m pointing into S;. The properties of these
elementary solutions will be investigated in the following sections. With the
definitions of Egs. (3.11) and (3.12), Eq. (3.10) can be rewritten as

d(P)= —i LB [0(%) —pun- V(%)] ds + 4%[ Lw [un . V(%)] ds + ®.(P)
(3.13)

(3.12)

The vector m here is the local normal to the surface, which points in the
doublet direction (as will be shown in Section 3.5). It is convenient to replace
n -V by 8/3n in this equation, and it becomes

o) ==32J,[o0)wzn ()] as+ 2 [ [z ()] as -oem
(3.13q)

Note that both source and doublet solutions decay as r— « and automatically
fulfill the boundary condition of Eq. (3.3).

In order to find the velocity potential in the region V, the strength of the
distribution of doublets and sources on the surface must be determined. Also,
Eq. (3.13) does not specify a unique combination of sources and doublets for a
particular problem and a choice must be made in this matter (usually based on
the physics of the problem).

It is possible to require that
_se
n  on on s

and in this case the source term on S, vanishes and only the doublet
distribution remains. On the other hand, the potential can be defined such that

O, =0 on Sp
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and in this case the doublet term on Sz vanishes and the problem will be
modeled by a source distribution on the boundary.

In the two-dimensional case the source potential is ®, =Inr as will be
shown in Section 3.7, and the two functions of Eq. (3.5) become

o, =Inr and ¢,=0 (3.14)

Also at the point P, the integration is around a circle with radius € and Eq.
(3.6b) becomes

L]
—f (lnr%——d>%)ds+f(lan<I>—d>V1nr)-ndS=0 (3.15)
circle € r A

The circumference of the small circle around P is now 2;te (compared to 4e?
in the three-dimensional case) and Eq. (3.7) in two dimensions is

!
q>(P)=—EL(lan—@vmr)-nds (3.16)

If the point P lies on the boundary Sp, then the integration is around a
semicircle with radius € and Eq. (3.16) becomes

1
<I>(P)=—;f(lan@—d)Vlnr)-ndS (3.164a)
S
whereas if P is inside Sp the two-dimensional version of Eq. (3.7b) is
1
0=——f(lan<I>,-—<I>,-Vlnr)-ndS (3.16b)
27 S

With the definition of the far field potential ®.. and the unit elements u and o
being unchanged, Eq. (3.13a) for the two-dimensional case becomes

1 3 1 3
<I>P=—f[ Inr—u—q ]dS——f —({nr)ds + ®.(P) (3.17
(P)=>- Lo o, (nr) o SWMan(nr) (P) (3.17)
Note that 3/3n is the orientation of the doublet as will be illustrated in Section
3.7 and that the wake model Sy in the steady, two-dimensional lifting case is
needed to represent a discontinuity in the potential ®.

3.3 SUMMARY: METHODOLOGY OF
SOLUTION ‘

In view of Eq. (3.13) ((3.17) in two dimensions), it is possible to establish
a fairly general approach to the solution of incompressible potential flow
problems. The most important observation is thatfthe solution of V?® =0 can
be obtained by distributing elementary solutions (sources and doublets) on the
problem boundaries (Sg, Sw). These elementary solutions automatically fulfill
the boundary condition of Eq. (3.3) by having velocity fields that decay as
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r—> . However, at the point where r = 0, the velocity becomes singular, and
therefore the basic elements are called singular solutions.

The general solution requires the integration of these basic solutions over
any surface S containing these singularity elements because each element will
have an effect on the whole fluid field.

The solution of a fluid dynamic problem is now reduced to finding the
appropriate singularity element distribution over some known boundaries, so
that the boundary condition (Eq. (3.2)) will be fulfilled. The main advantage
of this formulation is its straightforward applicability to numerical methods.
When the potential is specified on the problem boundaries then this type of
mathematical problem is called the Dirichlet problem (Kellogg,'> p. 286) and
is frequently used in many numerical solutions (panel methods).

A more direct approach to the solution, from the physical point of view, ,

is to specify the zero normal flow boundary condition (Eq. (3.2)) on the solid
boundaries. This problem is known as the Neumann problem (Kellogg,'* p.
286) and in order to evaluate the velocity field the potential is differentiated

1 1 1 3 /1
V g V(_) d f V[ (_)] » .
D= a7 s, o S + an s,,+swu " ds +vo (3.18)

r r

Again, the derivative 3/0n for the doublet indicates the orientation of the
element as will be shown in Section 3.5. Substituting this equation into
the boundary condition of Eq. (3.2) can serve as the basis of finding the
unknown singularity distribution. (This can be done analytically or
numerically.)

For a given set of boundary conditions, the above solution technique is
not unique, and many problems can be solved by using only one type of
singularity element or any linear combination of the two singularities.
Therefore, in many situations additional considerations are required (e.g., the
method that will be presented in the next chapter to define the flow near sharp
trailing edges of wings). Also, in a particular solution a mixed use of the above
boundary conditions is possible for various regions in the flowfield (e.g.,
Neumann condition on one boundary and Dirichlet on another).

Prior to attempting to apply this methodology to the solution of
particular problems, the features of the elementary solutions are analyzed in
the next sections.

3.4 BASIC SOLUTION: POINT SOURCE

One of the two basic solutions presented in Eq. (3.13) is the source/sink. The
potential of such a point source element (Fig. 3.3a), placed at the origin of a
spherical coordinate system, is

=—— (3.19)

The velocity due to this element is obtained by using V in spherical coordinates
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from Eq. (1.39). This will result in a velocity field with a radial component

only,
o 1 oe or
S v7 l I G 3.20)
9 4nv(r) Amr* 4xmr’ (

and, in spherical coordinates,

oPp o
(4- 90 qqz) = (E, 0, 0) = (W, 0, 0) (3.21)

So the velocity in the radial direction decays with the rate of 1/ r* and is singular
at r =0, as shown in Fig. 3.3b. Consider a source element of strengt.h o located
at the origin (Fig. 3.3a). The volumetric flow rate through a spherical surface

of radius r is

q4nr*= ( 4:;2) -4ar*=o0

Zh

- —

Streamlines @ = const.

3 .

(a) v

FIGURE 3.3

(a) Streamlines and equipotential
lines due to source element at the
origin, as viewed in the x-z
plane. (b) Radial variation of the
radial velocity component in-
duced by a point source.
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where 47r? is the surface area of the sphere. The positive o, then, is the
volumetric rate at which fluid is introduced at the source, whereas a negative o
is the rate at which flow is going into the sink. Note that this introduction of
fluid at the source violates the conservation of mass, therefore, this point must
be excluded from the region of solution.

If the point element is located at a point ry and not at the origin, then the
corresponding potential and velocity will be

o

o=-—YI _ _
47T |1 — 1y (3.22)
=9 Ik
=4 Ir — o> (3.23)

The cartesian form of this equation, when the element is located at (x0, Yo, z0),
is
g

B P Y ey ey R CED)
The velocity components of this source element are
o -
ulx.y,2)= ED 47[(x — xo)? +(I§zx— yJ:())Z +(z — z)*P? (3.25a)
n = Sores w30
w(x,y, z) = Z_;p= 4n[(x — x)? +c;§z:yi;)2 +(z - )2 (3.25¢)

This basic point element can be integrated over a line /, a surface S or a
volume V to create corresponding singularity elements that can be used, for

example, to construct panel elements. Consequently, these elements can be
established by the following integrals:

—_ i G(XOJ Yo, 20) dl

By ) e Ve T 6 oy (3.26)
_i a(x01 Yo, ZO) ds

®x, 5, 2) = 4 JsV(x — x0)* + (y —Yo)* + (z — 2z,)? (3.27)
—- i G(XO; Yo, Z0) dV

q)(x, b ) Z) ‘4ﬂ V\/(x _x0)2 T (y —yo)z I (Z = 2?)2 (3.28)

Note that o in Egs. (3.26), (3.27), and (3.28) represents the source strength
per unit length, area, and volume, respectively. The velocity components

induced by these distributions can be obtained by differentiating the cor-
responding potentials: ’

(u, v, w

“\ox’ 3y’ 5z

)_(@ 3P acp)
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3.5 BASIC SOLUTION: POINT DOUBLET
The second basic solution, presented in Eq. (3.13), is the doublet

o=Ln. V(%) (3.29)

A closer observation reveals that 5

Dyoubiet = — 5’; Doource

for elements of unit strength. This suggests that tl}e dgublet eleme‘nF candbe
developed from the source element. Consider a point sink at the origin and a
point source at 1, as shown in Fig. 3.4. The potential at a point P, due to these

two elements, is
(D:_i(i_ ! ) (3.30)
4z \|r| |r—1}

Now, bringing the source and the sink together by letting /—0, 0— @ such
that lo— u, and p is finite, the potential becomes

jm 2 (E1= )
&= e U

o>
ol—p

As the distance ! approaches zero,

el [e—1|—r?
and the difference in length between [r| and |r — 1| becomes

(e=1 —|r))—Icos ¥

Sink FIGURE 34 ) '
at origin The influence of a point source and sink at point P.
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and the potential becomes
__bcos?
Az r?

(3.31)

The angle ¢ is between the unit vector e, pointing in the sink-to-source
direction (doublet axis) and the vector r, as shown in the figure. Defining a
vector doublet strength p that points in this direction p=pu €, can further
simplify this equation:

p-r

P=—-——7 .

4nr® (3-32)
Note that this doublet element is identical to the second term appearing in the
general equation of the potential (Eq. (3.13), or Eq. (3.29)) if ¢, is in the m
direction, thus

. A S _L)__i
(I)doublet - 4.7"'3 =—¢ V( 4mr - on q)source (333)

For example, for a doublet at the origin, the doublet strength vector
(4, 0, 0) aligned with the x axis (e, =e, and & = 6), the potential in spherical
coordinates is
ucos @
dnr?

O(r, 6, )= - (3.34)
Furthermore, in cartesian coordinates, the arbitrary orientation of p can be
expressed in terms of three generic unit doublet elements whose axes are
aligned with the coordinate directions:

0,00  (0,u0 (0,0,p)

The different elements can be derived for each of these three doublets by using
Eq. (3.32) or by differentiating the corresponding term in Eq. (3.29) using
9/9n as the derivative in the direction of the three axes. The velocity potential
due to such doublet elements, located at (xo, y, 2o), is:

4) .Y, —_— .V(__>=___(__._) .
(x y Z) 4 n Il‘ r0| 4 Il' I'OI (3 35)

Taking 3/0n in the x, y, and z directions yields

a/ox

®(x, y, z)=ﬁ 3/3y

3/3z

Equation (3.34) shows that the doublet element does not have a radial
symmetry and it has a directional property. Therefore, in cartesian coordinates

three elements are defined each pointing in the x, y, or z directions (see, for
example, the element pointing in the x direction in Fig. 3.5). After performing

1
\/(x —x0)2 +(y _Yo)2 +(z —Z)z

(3.36)
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zA

FIGURE 3.5.

x Sketch of the streamlines due to a doublet pointing in the
x direction (e.g., like a small jet engine blowing in the
p=(u, 0, 0) direction).

the differentiation in Eq. (3.36) in the x direction the velocity potential is

Bx, 3, 2) = = - (= xl(x =50 + (¥ =y’ + (2 = 2T (3.37)
The result of the differentiation in the y direction is

®(x, y, z) = — ﬁ (r =yol(x —xo) + (¥ —yo)* + (2 — 20’1 (3.38)
and the result in the z direction is

O(x, 3, 2)= =4 (@~ @ —x + (&~ 3+ (2~ (339)

The velocity field, due to an x-directional point doublet (g, 0, 0) is
illustrated in Fig. 3.5. The velocity components due to such an element at the

‘origin are easily described in spherical coordinates:

P pucosb
= 3.40
=% T 2ar (3.40)
10® usiné
== 3.41
%=736" anr (3:41)
1 9P
= — =0 3.42
9= sin 6 9¢ (3-42)

The velocity components in cartesian coordinates for this doublet at (xo, yo, o)
can be obtained by differentiating the velocity potential in Eq. (3.37):

4x [(x — x0)" + (y — yo)* + (z — 20)7]
_3u (x = x0)(y — y0) 3.4
YT an (- %0+ (y — o)+ (2 - 20T 649
3u (x = x0)(z = 20) (3.45)

M im0+ () — 3P + (2 - 20T
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Again, this basic point element can be integrated over a line /, a surface S
or a volume V to create the corresponding singularity elements that can be
used, for example, to construct panel elements. Consequently, these elements
[e.g., for (u, 0, 0)] can be established by the following integrals:

= — i M(xO) Yo, ZO)(x - xO) dl
(I)(x, Y Z)_ fl[(x_xo)2+(y_y0)2+(z_zo)2]3/2

= (3.46)

__1 1 (xo, Yo, Z0)(x — x0) dS
D(x, y, z)= 4 s [(x _x0)2+ (y __yo)z +(z— 20)2]3,2 (347)

®(x, y, z) = — ﬁf #(xo, Yo, Zo)(x — x0) dV (3.48)

v —x)’ +(y —yo)* + (z - 20)°P?
3.6 BASIC SOLUTION: POLYNOMIALS

Since Laplace’s equation is a second order differential equation, a linear
function of position will be a solution, too:

®=Ax+By+C:z (3.49)
The velocity components due to such a potential are
P odb od
=—=AEU°° =—=BE o = —= = (N .
u Ep v 3 V. w 3 C=W, (3.50)

where U,., V., and W, are constant velocity components in the x, y, and z
directions. Hence, the velocity potential due a constant free-stream flow in the
x direction is

d=U.x 3.51)
and in general
O=Ux+V.y+ W,z (3.52)

Along the same lines, additional polynomial solutions can be sought and as an
example let’s consider the second-order polynomial with A, B, and C being
constants:

® = Ax*+ By* + Cz? (3.53)
To satisfy the continuity equation,
VO=A+B+C=0

There are a large combination of constants that will satisfy this condition.
However, one combination where one of the constants is equal to zero (e.g.,
B =0) describes an interesting flow condition. Consequently

A=-C
and by substituting this result into Eq. (3.53) the velocity potential becomes
O=A@*~-2? (3.54)
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The velocity components for this two-dimensional flow in the x—z plane are
u=2Ax v=0 w=-2Az (3.55)
To visualize this flow, the streamline equation (1.6a) is needed:

dx_dz

u w
and substituting the velocity components yields

dx dz

-2A_x 2Az

Integration by separation of variables results in

xy =const. =D (3.56)

The streamlines for different constant values of D =1,2,3- - - are plotted ip
Fig. 3.6 and, for example, if only the first quadrant of the x—z plane is
considered, then the potential describes the flow around a corner. If th.e upper
half of the x—z plane is considered then this flow df:scnbes a stagnation flow
against a wall. Note that when x =z =0, the velocity components u =w = 0
vanish too—which means that a stagnation point is present at the origin, and
the coordinate axes x and z are also the stagnation streamline.

FIGURE 3.6 - .
Streamlines defined by xz = constant. Note that each quadrant describes a flow in a corner.
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3.7 TWO-DIMENSIONAL VERSION OF
THE BASIC SOLUTIONS

Source. We have seen in the three-dimensional case that a source element will
have a radial velocity component only. Thus, in the two-dimensional r-6
coordinate system the tangential velocity component 46 =0. Requiring that the
flow be irrotational yields

170 ) 3
W= =7 | 5 090 5500 | = = (@) =0

and therefore the velocity component in the r-direction is a function of r only

(9-=q.(r)). Also, the remaining radial velocity com i
. . > t
continuity equation (Eq. (1.35)): ’ PORCIT MUSL satisly the

dq, q, 1d
ke LOVER: LASpapiad -
dr r rdr (rg;)=0

V.q=
This indicates that rq, = const. = 0/2x where o is the area flow rate passing

through a circle of radius 7, and the resulting velocity components for a source
element at the origin are

_%_o

"= T2 (.37)
_ 1 34)_

de —;%—0 (358)

By integrating these equations the velocity potential is found,
o=_"|
= nr+C (3.59)

z(i;ui 9t)he constant C can be set to zero, as in the source potential used in Eq
The strength of the source is then ¢, which re i

. A presents the flux introduced

by the source. This can be shown by observing the flux across a circle with a

radius R. The velocity at that location, according t .
the flux is ing to Eq. (3.57), is 0/2aR, and

o
2R =—— -
q.27 2:1:R2”R o

So' the velocity, as in the three-dimensional case, is in the radial direction onl
(F.lg. ;5.3a) and decays with a rate of 1/r. At r =0, the velocity is infinite am)i,
this singular point must be excluded from the region of the solution.

In cartesian coordinates the corresponding equations for a source located
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at (xo, Zo) are

[0

7 In V(x — x0)* + (z — z0)* (3.60)

P(x, z) =

o g X = Xg
R Ve e i (3.61)

P o zZ—2 '

In the two-dimensional case, the velocity components can be found as the
derivatives of the stream function for a source at the origin. Recalling these
formulas (Eqs. (2.80a, b)) and comparing with the velocity components results

mn

v
-9 : .63
e - (3.63)
13¥ o
"= 36 I 69

Integrating Eqs. (3.63) and (3.64) and setting the constant of integration to
zero yields

o
Y=—0 3.
= (3.65)
The streamlines (Eq. (3.65)) and the perpendicular constant potential lines
(Eq. (3.59)) for the two-dimensional source resemble those for the three-
dimensional case and are shown schematically in Fig. 3.3a.

Doublet. The two-dimensional doublet (Fig. 3.7) can be obtained by letting a
point source and a point sink approach each other, such that their strength
multiplied by their separation distance becomes the constant u (as in Section
3.5). Because of the logarithmic dependence of the source potential, Eq.

(3.32) becomes

o()=-2 (3.66)

N\
/ \ FIGURE 3.7

Streamlines and equipotential

lines due to a two-dimensional

@ = const. lines doublet at the origin, pointing
Streamlines in the x direction.
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which can be derived directly by using Eq. (3.33), and by replacing the source
strength by u,

d o
O(r)= —52;1“ r (3.67)

As an example, selecting n in the x direction yields
n=(u 0)
and Eq. (3.66) for a doublet at the origin becomes

u cos @
<I>(r, 9)= —%

(3.68)

r

The velocity field due to this element can be obtained by differentiatin
the velocity potential: &

_ a_CD _mucos@
qr ar - 2”’2 (369)
_10® _p sin 6
=756~ 2ar (3.70)
In cartesian coordinates for such a doublet at the point (x,, z,),
—H X = X0
D(x, z2)=—
( ) 271_ (x _xo)2 + (Z _ 20)2 (371)
and the velocity components are
_H (x — x0)* = (z — 2)?
27 [(x — xo)* + (z — 20)’]? (3.72)
B 2x—xo)(z — 2)
(3.73)

T 27 [(x = x0)* + (z — 20)

. To derive the stream function for this doublet element, located at the
origin, write the above velocity components in terms of the stream function
derivatives:

_ ¥ _u sin
e or  2mr? (3.74)
13¥ pucos@

=736 277 (3.75)

Integr?ting Egs. (3.74) and (3.75) and setting the constant of integration to
zero yields (see streamlines in Fig. 3.7):

_usin 6
2ar

b4

(3.76)
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Note that a similar doublet element where p= (0, u) can be derived by
using Eq. (3.66) (or (3.67)).

3.8 BASIC SOLUTION: VORTEX

The general solution to Laplace’s equation as stated in Egs. (3.13) and (3.17)
consists of source and doublet distributions only. But as indicated in Section
3.6, other solutions to Laplace’s equation are possible and based on the vortex
flow of Section 2.10 we shall formulate the velocity potential and its derivatives
for a point vortex (the three-dimensional velocity field is then given by the
Biot-Savart law of Section 2.11). Therefore, it is desired to establish a
singularity element with only a tangential velocity component, as shown in Fig.
3.8a, whose magnitude will decay in a manner similar to the decay of the radial
velocity component of a two-dimensional source (e.g., will vary with 1/r):

q.=0
qe = qe(r, 6)

Substituting these velocity components into the continuity equation (Eq.
(1.35)) results in g, being a function of r only

qo = qe(r)

For irrotational flow, substitute these relations into the vorticity expression to
get

119 3
w,= 22 (a0) 25 (a)| = 5. (a0) =0

Lines of constant potential.

A /
/ qe r
y i
/ 7~
sg( 0 .
L .

X

Velocity
due to
positive I’

(a) (b)

FIGURE 3.8
(a) Streamlines and equipotential lines for a two-dimensional vortex at the origin. (b) Radial

variation of the tangential velocity component induced by a vortex.
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By integrating with respect to r, we get

rqge =const. = A

So the magnitude of the velocity varies with 1/7 similarly to the radial velocity
component of a source. The value of the constant A can be calculated by using
the definition of the circulation I as in Eq. (2.36):

r=§¢I'dl=rqg-rd0=—2nA

2r

Note that positive T is defined according to the right-hand rule (positive
clockwise), therefore, in the x—z plane as in Fig. 3.8 the line integral must be
taken in the direction opposite to that of increasing 6. The constant A is then

-_r
Y
and the velocity field is
q,=0 B.77)
r
=—-— 3.78
qe 2r ( )

As expected, the tangential velocity component decays at a rate of 1/r as
shown in Fig. 3.8b. The velocity potential for a vortex element at the origin
can be obtained by integration of Eqs. (3.77) and (3.78):

r
<I’=J’qerd¢9+C=—ﬁ6+C (3.79)

where C is an arbitrary constant that can be set to zero. Equation (3.79)
indicates too that the velocity potential of a vortex is multivalued and depends
on the number of revolutions around the vortex point. So when integrating
around a vortex we do find vorticity concentrated at a zero area point, but with
finite circulation (see Sections 2.9 and 2.10). However, if integrating q-dl
around any closed curve in the field (not surrounding the vortex) the value of
the integral will be zero (as shown at the end of Section 2.10 and in Fig.
2.11a). Thus, the vortex is a solution to the Laplace equation and results in an
irrotational flow, excluding the vortex point itself.

Equations (3.77) to (3.79) in cartesian coordinates for a vortex located at
(xO) Z0) are

r z—2
®=——tan”' 3.80
27" X —Xg (3.80)
r -
u= o (3.81)

T 2n(z - 20)* + (x — xg)?
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r X —Xg
27 (z — 2o)* + (x — xq)?

w= (3.82)

To derive the stream function for the two-dimensional vortex located fit
the origin, in the x—z (or r—6) plane, consider the velocity components in
terms of the stream function derivatives

v T
== 3.83
9e or 27r ( )
1o¥
=-—=0 (3.84)
=50

Integrating Egs. (3.83) and (3.84) and setting the constant of integration
to zero yields

=Lln r (3.85)
2x

and the streamlines where W = const. are shown schematically in Fig. 3.8a.

3.9 PRINCIPLE OF SUPERPOSITION

If ®,9,,...,P, are solutions of the Laplace equation (Eq. (3.1)),. which is
linear, then

n
O=> P (3.86)
k=1
. is also a solution for that equation in that region. Here ¢, c;, ..., ¢, are

arbitrary constants and therefore

VZ(I) = 2 Cx qu)k =0
k=1
This is a very important property of the‘La‘place equatiqn, since after
obtaining some of the elementary solutions, sgtlsfymg a set of given bour{dary
conditions can be reduced to an algebraic search for ' t.he right linear
combination of these solutions (to satisfy the boundary conditions).

3.10 SUPERPOSITION OF SOURCES
AND FREE STREAM: RANKINE’S OVAL

As a first example for using the principle of superpositioq, consider the
two-dimensional flow resulting from superimposing a source w1th'a strength o
at x = —X,, a sink with a strength —o at x = +x,; both on the x axis, and a frfae
stream flow with speed U. in the x direction (Fig. 3.9). The velocity potential
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&) P(x, 2)
U
— r
r
—_— Source Sink
i
(]

_— \T / 8, 2

— /N R :

FIGURE 3,9
Combination of a free stream, a source, and a sink.

for this case will be

o o
27 () =5 In(r) (3.87)

where r, =V e =V 2
3 (x+x0)*+2% and r, = (x —x0)*+ z2. The stream function can

be obtained by adding the stream functions of the individual elements:

P(x, z)=U.x +

Y(x, z)=U, Ty 9
(x, z) z+ - 0, om 9, (3.88)
where

1

6, =tan" and 6, =tan"!

X +x X—x,

Substituting r,, r,, ; .
» T2, 05, and 6, into the velocit i
function yields y potential and the stream

D(x, 2) = Ux +—In / 22— Ly 2
(x, 2) x+2ﬂln (x+x0)* +2 _Zrln (x —x0)*+ 2% (3.87a)

2 tan—1—2 9 ian-'—2
2n x+x, 2700 =z (3.88q)

Y(x,z2)=U.z +

The velocity field due to this ial i i i
‘ : potential is obtained by diff iati i
velocity potential or the stream function: Y ierentiating cither the

u=—=y + 2 __**t*% o0 x-x
X 27 (x +x0) +2* 27 (x X’ + 22 (3.89)
w =@=1_2\_£;
9z 2m(x+x0)*+2% 2xn(x —xo)? + 22 (3.90)

Because of the symmetry about the x axis the stagnation points are located
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FIGURE 3.10 - s e
(a) Streamlines inside and outside of a Rankine oval. (b) Velocity distribution (g°=u”+w") on

the surface of 20 percent and- 50 percent thick Rankine ovals.

along the x axis, at points further out than the location of the source and sink,
say at x = xa (Fig. 3.10a). The w component of the velocity at these points
(and along the x axis) is automatically zero, too. The distance a is then found

by setting the u component of the velocity to zero

o 1 o 1 o Xg

= Um + _— =U,———5—5-=
u(xa, 0) 2a(xa+xy) 27(xa—xo) m(a® - x3)
and a is
OxXg 2
= + 3.91
a U, Xo ( )

Consider the stagnation streamline (which passes through the stagnation
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points). The value of ¥ for the stagnation streamline can be found by
observing the value of Eq. (3.88) on the left-side stagnation point (where
6,=0,=m, and z = 0). This results in ¥ = 0, which can be shown to be the
same for the right-side stagnation point as well (where 6,=6,=0). The
equation for the stagnation streamline is therefore

9o —— = ZLtan ' —2—=0 (3.92)

tan™
2.7[ X +x° 2.7[ X — Xp

W(x,z)=U.z +

The streamlines of this flow, including the stagnation streamline, are sketched
in Fig. 3.10a and the resulting velocity distribution in Fig. 3.10b. Note that the
stagnation streamline includes a closed oval shape (called Rankine’s oval after
W. J. M. Rankine, a Scottish engineer who lived in the nineteenth century)
and the x axis (excluding the segment between x = +a). This flow (source and
sink) can therefore be considered to model the flow past an oval of length 2a.
(For this application, the streamlines inside the oval have no physical
significance.) The flow past a family of such ovals can be derived by varying
the parameters o and x, or a, and by plotting the corresponding streamlines.

3.11 SUPERPOSITION OF DOUBLET
AND FREE SYSTEM: FLOW AROUND A

CYLINDER

Consider the superposition of the free stream potential of Eq. (3.51), where
x=rcos @ in cylindrical coordinates, with the potential of a doublet
(Eq. (3.68)) pointing in the negative x direction [p=(—p, 0)]. The combined
flow, as shown in Fig. 3.11, has the velocity potential

0
= Urcos 6+2-= (3.93)

The velocity field of this potential can be obtained by differentiating Eq.
(3.93):

_5®_ (Um _E 2) cos 6 (3.94)
2mr

FIGURE 3.11
Addition of a uniform flow and a

Streamlines for doublet to describe the flow around a
a doublet cylinder. '

Streamlines
for a uniform
flow
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u ) .
2 sin 8 (3.95)

;f 1t(l)n‘sv ii:lc.:v&trhcombination is _thought of as a limiting case of the flow in Section

o;,al it e source aqd sm.k approaching each other, it is expected that th

ove 1/ ! a(r}pr?ach a circle in this limit. To verify this, note that g, =0 f :
Vu/2nU, for all 6 (from Eq. (3.94)) and the radial direction is r‘ftr)rmal (t)(:

the circle. If we take r = R . .
doublet is as the radius of the circle, then the strength of the

= 2
p=Uz2aR (3.96)

Substituting this value of u i
u into Egs. (3. i
flowfield around a cylinder with a rgdiu(s Ig?)’ (39, and (.99) resulis n the

D=7, R
= U, cos B(r + 7) 3.97)
RZ
L =U, =
q cos 9(1 r ) (3.98)
T R?
qe U. sin 0(1 + 7) (3.99)

For the two-dimensional i

. : case, evaluation of the stream functi
readllly provide the. streamlines in the flow (by setting lI‘=com::c)no;hmn
results for the cylinder in a free stream can be obtained too. .by f;:

superposition of the free str .
functions: eam and the doublet [with (—u, 0) strength] stream

Y = U,r sin 0__u_sin_0
e (3.100)
:11; ::agnagon points on the circle are found by letting go =0 in Eq. (3.99
P e( :;d t;lO a?d 0 = n. The value of ¥ at the stagnation points 3.= 0. an)é
(.100) s lIt.;,rf ore a.lo.ng th§ stagnation streamline) is found from E
. e W =0. This is equivalent to requiring that q.(R, 8) =0, and tl(ll(';

gl n

4,=0 gg=-2U,sin @ (3.102)
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s FIGURE 3.12
Streamlines due to the addi-
tion of a doublet and a uni-
form flow (flow around a
cylinder).

The pressure distribution at r = R is obtained now with Bernoulli’s equation:

P o P
wt-Us=p+=
P 5 p 2 9o
Substituting the value of g, at r = R yields
P —p-=3pUi(1 - 4sin? 9) (3.103)
and the pressure coefficient is
PP i 2
C,= =(1-4 0 3.104
» IpU2 ( sin” 8) ( )

It can be easily observed that at the stagnation points 6 =0 and 7 (where
g =0) C, =1. Also the maximum speed occurs at the top and bottom of the
cylinder (6 = /2, 37/2) and the pressure coefficient there is —3.

To evaluate the components of the fluid dynamic force acting on the
cylinder, the above pressure distribution must be integrated. Let L be the lift
per unit width acting in the z direction and D the drag per unit width acting in
the x direction. Integrating the components of the pressure force on an
element of length R d6 leads to

2R 27
L=f —deBsin0=f ~(p —p-)R dOsin 6
0 0
27
=—%puif (1—4sin’ B)R sin 6d6 =0 (3.105)
(1]

27 27
D=f —de()cosH=f —(p —p)RdO cos 6
0 0

2

=—3pUL| (1-4sin’B)Rcos8dO=0 (3. 106)
0

Here the pressure was replaced by the pressure difference p — p.. term of Eq.
(3.103), and this has no effect on the results since the integral of a constant
pressure p. around a closed body is zero. A very interesting result of this
potential flow is that the fore and aft symmetry leads to pressure loads that
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RE 3.13 '
g)g:igen bubble visualization of the separated water flow around a cylinder at a Reynolds

number of 0.2 x 10® (Courtesy of K. W. McAlister and L. W. Carr, U.S. Army Aeroflightdynam-
ics Directorate, AVSCOM).

cancel out. In reality the flow separates, and w.ill not follow the cyl'mder;sﬂrear
surface, as shown in Fig. 3.13. The pressure dlstqbutlpn due to tl‘ns lr‘ea t(;lv;;
along with the results of Eq. (3.104), are plotted in Elg. 3.14. Thn}sl shows hat
at the front section of the cylinder, where the .ﬂow is att?ched, the pressfuthe
are well predicted by this model. H;)wever‘, l()ffl;md tthe cylinder, because o
i he pressure distribution is different.

flow sIerF i;f;:“:;(’afnplg, because of the symmetry in thfa upper aqq the low;;
flows (about the x axis), no lift was generated. A lifting COI‘ldltIOIll.t car:)V be
obtained by introducing an asymmetry, 1n t‘he form gf a clockwnse vortex
strength T situated at the origin. The velocity potential for this case 1s

R? r
_ —J—-—0 (3.107)
<I>—Umcost9<r+ r) o

_ T T T T T T T
N Equation 3.104
_3+ —-— Experiment at 7
'/'\‘ Re =6.7 x 103 /"‘\‘ |
-2+ / \‘ " \\
C, ! \ ) A\ .
-1r 1/ -\ '/ A\
0 4 X T - N\ ]
1 /1 1 L 1 ] 1 1 l 1 1
180 90 0 70 1%0
0 (deg)
FIGURE 3.14

. . . dat
Theoretical pressure distribution (solid curve) around a cylinder compared with experimental data
at Reynolds number of 6.7 X 10° (chain curve) from Ref 1.6.
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The velocity components are obtained by differentiating the velocity potential

R2
4= U, cos 0(1 - 7) (3.108)
which is the same as for the cylinder without the circulation, and
R? r
- vsno(1+8) T |
ge U. sin Z) o (3.109)

This potential still describes the flow around a cylinder since at = R the
radial velocity component becomes zero. The stagnation points can be
obtained by finding the tangential velocity component at r = R

b

r
=-=2U,sin § — —— .
de sin >R (3.110)
and by solving for g, =0,
r
in 6 = — .
S s = T azRUL (3.111)

These stagnation points (located at an angular position 6,) are shown by the
two dots in Fig. 3.15 and lie on the cylinder as long as I' < 47RU.,.

The lift and drag will be found by using Bernoulli’s equation, but because
of the fore and aft symmetry no drag is expected from this calculation. For the

lift, the tangential velocity component is substituted into the Bernoulli
equation and

25 2n 2 2
. pU. p . r .
L=f ~(p - p-)Rd6 0=—f [———( 2 —)]
A (P —p-) sin A 2 2 20, sm0+2nR sin @ Rd6
Uwr 2
=P [ i 040 = puT (3.112)

0

This very important result states that the force in this two-dimensional flow is
directly proportional to the circulation and acts normal to the free stream. A
generalization of this result was discovered independently by the German
mathematician M. W. Kutta in 1902 and by the Russian physicist N. E.
Joukowski in 1906. They observed that the lift per unit span on a lifting airfoil
or cylinder is proportional to the circulation, consequently the Kutta—

1
o [
AIAN

-/-\ Streamlines for the flow around a cylinder with circula-
tion I'.
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FIGURE 3.16 '
Q- Notation used for the generalized Kutta—

Joukowski theorem.

Joukowski theorem (which will be derived in Chapter 6) states:

The resultant aerodynamic force in an incompressible, ir.lvisc.id, 1rrot3tlontal ﬂm:
in an unbounded fluid is of magnitude pQ.I' per unit width, an a:: s in 2
direction normal to the free stream. (Note that the speed of t'hc free stream
taken to be Q.. since the stream may not be parallel to the x axis.)

Using vector notation, this can be expressed as
F=pQ.XT (3.113)

where F is the aerodynamic force per unit width apd acts in.thg ;iére;;::)tg
determined by the vector product, as shown schematically in Fig. 3.16.

that positive I is defined according to the right-hand rule.

3.12 SUPERPOSITION OF A THREE-
DIMENSIONAL DOUBLET AND FREE
STREAM: FLOW AROUND A SPHERE

The method of the previous section can be extended to s.tllu?y tgfaic;es; ;))fl :ll::
i i tential 1s o
three-dimensional flow over a sphere. The velocity potent v
iti i Eq. (3.51) with a doublet pointing
superposition of the free stream potential of Eq : : poi
inI:h::pnegative x direction (Eq. (3.34)). The combined velocity potential is

icosze (3.114)
ax r

®=U,rcos 6+

The velocity field of this potential can be obtained by differentiating Eq.
(3.114):

o® o ) (3.115)
=—= - os 0
=5 (Uw 202) €
190 __ K ) in 0 (3.116)
20=155= (- + 1053)
__1 9 _, (3.117)
9 = sin 6 9¢
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At the sphere surface, where r = R, the zero normal flow boundary condition
is enforced (¢, =0),

q,=(Um—2:R3> cos §=0 (3.118)

This condition is met at 8 = /2, 37/2 and in general, when the quantity in the

parentheses is zero. This second condition is used to determine the doublet
strength,

p = U2aR> (3.119)

which means that ¢, =0 at r=R, which is the radius of the sphere.
Substituting the strength u into the equations for the potential and the velocity
components results in the flowfield around a sphere with a radius R:

R3
P = U, cos 0<r + P) (3.120)
R3
q,= U, cos 0(1 - ?) (3 121)
R3
o = —U. sin 0(1 + P) (3.122)

To obtain the pressure distribution over the sphere, the velocity
components at r = R are found:

2,=0 gg=-3U.sin @ (3.123)

The stagnation points occur at € =0 and 6 = z, and the maximum velocity at
0=n/2 or 6=3n/2. The value of the maximum velocity is 3U., which is
smaller than in the two-dimensional case.

The pressure distribution is obtained now with Bernoulli’s equation

P —P-=3pU%(1 - §sin® 6) (3.129)
and the pressure coefficient is

_P P~

7174

It can be easily observed that at the stagnation points 8 =0 and & (where

g =0) C, =1. Also the maximum velocity occurs at the top and bottom of the
sphere (6 = 7/2, 37/2) and the pressure coefficient there is -5/4.

Because of symmetry, lift and drag will be zero, as in the case of the flow
over the cylinder. However, the lift on a hemisphere is not zero (even without
introducing circulation); this case is of particular interest in the field of
road-vehicle aerodynamics. The flow past a sphere can be interpreted to also
represent the flow past a hemisphere on the ground since the x axis is a
streamline and can be replaced by a solid surface.

=(1 - {sin? 6) (3.125)
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The lift force acting on the hemisphere’s upper surface is
L=—f (p — p=)sin O sin @ dS (3.126)

and the surface element dS on the sphere is
dS = (R sin 8dg)(R d6)
Substituting dS and the pressure from Eq. (3.124), the lift of the hemisphere is

L= —f‘j 1pU%(1 — §sin® )R?sin” 6 sin ¢ d6 do
0 J0

4 . . 7 21"\ _ 1 porp
= —%pUﬁL (1 —sin® 6)2R?sin* d6 = —pRZUZa(E - 3) =Y apR*UZ
(3.127)
The lift and drag coefficients due to the upper surface are then
C=r =t -2 (3.128)
1 U2 i R? 8
2P7=2
Cp= I——D—-= 0 (3.129)
2 ] 2
et 2_R
2PU=3

For the complete configuration the forces due to the pressure distribut}on on
the flat, lower surface of the hemisphere must be included, too, in this

calculation.

3.13 SOME REMARKS ABOUT THE
FLOW OVER THE CYLINDER AND THE
SPHERE

The examples of the flow over a cylinder and a sphere clea'rly demonst;ate the
principle of superposition as a tool for deriving particular solutlong to
Laplace’s equation. From the physical point of view, these resu!ts fall in a
range where potential flow-based calculations are inaccurate owing to flow
separation. The pressure distribution around the cylinder, as.obtamed from
Eq. (3.104), is shown in Fig. 3.14 along with some typical experimental resuits.
Clearly, at the frontal stagnation point (6 = ) the results of Eq: (3.104) are
close to the experimental data, whereas at the back the difference is large. TFus
is a result of the streamlines not following the surface curvature and separating
from this line as shown in Fig. 3.13; this is called flow separation.

The theoretical pressure distribution (Eq. (3.125)) for the sphere,
along with the results for the cylinder, are shown in Fig. 3.17. Note that ff)r Fhe
three-dimensional case the suction pressures are much smaller (relieving
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Circular cylinder
3.0
_20 -
C,
" 1o
0
1.0
_.% %
I I N W B | T S N FIGURE 3.17
—80-60-40-20 0 20 40 60 80 Pressure distribution over the sur-
0 (deg) face of a cylinder and a sphere.

effect). Experimental data for the sphere shows that the flow separates too
but the low pressure in the rear section is smaller. Consequently, the actual
drag coefficient of a sphere is less than that of an equivalent cylinder, as shown
in Fig. 3.18 (for Re >2000). This drag data is a result of the skin friction and
flow separation pattern, which is strongly affected by the Reynolds number.
Clearly, for the laminar flows (Re < 2000) the drag is large owing to larger flow

IANS

5 - |
\x bl

* Experiments
Theory

Sphere

bret 16917 W,,\...a.-.a—__\\"

10-! 100 10! 102 103 104 103

FIGURE 3.18
Typical experimental results for the drag coefficient for cylinders and spheres as a function of
Reynolds number. From Ref. 1.6. Reproduced with permission of McGraw-Hill, Inc.
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separation behind the body, which is being reduced as the turbulent flow
momentum transfer increases (Re > 10°, see Schlichting,’® p. 17). Note that
the inviscid flow results do not account for flow separation and viscous friction
near the body’s surface and therefore the drag coefficient for both cylinder and
sphere is zero. This fact disturbed the French mathematician d’Alembert, in
the middle of the seventeenth century, who arrived at this conclusion that the
drag of a closed body in two-dimensional inviscid incompressible flow is zero
(even though he realized that experiments resuit in a finite drag). Ever since
those early days of fluid dynamics this problem has been known as the
d’Alembert’s paradox.

3.14 SURFACE DISTRIBUTION OF THE
BASIC SOLUTIONS

The results of Sections 3.2 and 3.3 indicate that a solution to the flow over
arbitrary bodies can be obtained by distributing elementary singularity
solutions over the modeled surfaces. Prior to applying this method to practical
problems, the nature of each of the elementary solutions needs to be
investigated. For simplicity, the two-dimensional point elements will be
distributed continuously along the x axis in the region x;— x,.

SOURCE DISTRIBUTION. Consider the source distribution of strength per
length o(x) along the x axis as shown in Fig. 3.19. The influence of this
distribution at a point P(x, z) is an integral of the influences of all the point
elements:

1 (=
P(x, z) = rym f o(xo) In V(x — x0)* + 2% dx, (3.130)
. i 2 X — xO
u(x, z) = e J;‘ o(xo) P+ dx, (3.131)
1 [ z
w(x, Z) = Zt f,l U(XO) mdxo (3 132)

In order to investigate the properties of such a distribution for future
modeling purposes, the type of discontinuity across the surface needs to be

zA
- 3% _ a0~
= %5 az
L FIGURE 3.19
0(x) N n T i IA . Source distribution along the x axis.
- ' +
. 9o° II l % * [Note i E@(x, 0+)].
4 9z 38z
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examined. Since each source emits fluid in all directi intuiti

that the resulting velocity will be away from the s(:lcrtfl:czs,, z::tsl;:(t)l\:‘:ll)i’nwFCi car31 8169e
From the figure it is clear that there is a discontinuity in the w compoi.en.t ai
z=0. Note that as z— 0 the integrand in Eq. (3.132) is zero except whe
Xg=X. Therefore, the value of the integral depends only on the contributio:ll
from this point. Consequently, 0(xo) can be moved out of the integral and
replaced by o(x). This suggests that the limits of integration do not affect th,
value of the integral and for convenience can be replaced by F«. Also, fro .
the z dependepce of the integrand in Eq. (3.132), the velocity. com;;one::
wherl appr'oac.hmg z =0 from above the x axis, w*, is in the opposite direction
tow E which is the component when approaching the axis from below. For the
velocity component w*, Egq. (3.132) becomes .

w(x, 04) = lim Z&) f 2
20+ 2w J_o(x —x0)*+ 22 Y

g n

(3.133)

and the integration limits for z— 0+ b
ecome o, .
becomes The transformed integral

w(x, 0+) = lim @f _dA_
e 1+ A2

z—0+ 2.7[
ox) ..

= ?tan 1 A.I_w

-9 [’1_ (_J_f)] _ o)
2z 12 2/ 2 (3.134)

Therefore w(x, 0+) become
_ 9P o(x)
w(x, 0+) = g (x, 0+)= :t—z— (3.135)

This element will be suitable to model flows that are symmetrical with respect

to the x axis and the total jump i i
: p in the velocity component
surface of the distribution is ’ P normal to the

wh—wT=o(x) (3.136)

The‘ u component is_ continuous across the x axis, and its evaluation needs
additional considerations (e.g., as in Chapter 4).

DOUBLET DISTRIBUTION. In a similar manner the influence of a doublet
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px) =P+ (x) — ¢~ (x) = AP

u(x)

[VRL VIR, ¥ 1
ASEANEEA)

. M x  FIGURE 3.20
: A T T Doublet distribution along the x axis.

distribution, pointing in the z direction [u= (0, u)], at a point P(x, z) is an
integral of the influences of the point elements between x,— x, (Fig. 3.20).

P(x,z)=— %t -[‘2 u(xo) m dx, (3.137)
_1= (x —x0)z
u(x, z)= p L p(xo) —_—[(x —xP + 2] dx, (3.138)
___1_ 2 ("_xo)z_l2
Wi )= -5 R (3.139)

Note that the velocity potential in Eq. (3.137) is identical in form to the w
component of the source (Eq. (3.132)). Approaching the surface, at z =0+,
this element creates a jump in the velocity potential. This analogy yields

O(x, 0£) = x% (3.140)

This leads to a discontinuous tangential velocity component given by

od 1d
u(x, 0£) = (x, 0£) = ;E% (3.141)

Since the doublet distribution begins at x,, the circulation I'(x) around a path
surrounding the segment x,— x is

Iix) = f ) u(xo, 0+) dxo + f B u(xo, 0—) dxo= —p(x) (3.142)

which is equivalent to the jump in the potential

I'(x) = ®(x, 0+) — P(x, 0-) = —u(x) = AD(x) (3.143)

VORTEX DISTRIBUTION. In a similar manner the influence of a vortex
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11\

APt 3"
i T T

y(x)
ocolololeeoo0-0-0-0—6—6 _» FIGURE 3.21
X VoL - X2 X Vortex distribution along the x axis.

distribution at a point P(x, z) is an integral of the influences of the point
elements between x,;— x, (Fig. 3.21).

X2

1 o, z
¢(x, Z) = Zt' ., 'Y(xO) tan 1 X — xo d.xO (3. 144)
u(x, z) = L J'xz y(xo) - L dx, (3.145)
’ 2 ), (x —xo)*+ 22
1 ™ X —Xg '
=—— ———dx 3.146
W(x, Z) 2][ J;l Y(xo) (x _x0)2 + 22 (1] ( )

Here the u component of the velocity is similar in form to Eqs. (3.13.2)
and (3.137) and there is a jump in this component as z = 0+. The tangential
velocity component is then

u(x, 0t) = %}) (x,01)= iZ% (3.147)

The contribution of this velocity jump to the potential jump, assuming
that ® =0 ahead of the vortex distribution is

A®D(x) = B(x, 0+) — B(x, 0-) =J"Y_(;‘_°)dx0_ J’ _y%))dx()

The circulation T is the closed integral of u(x, 0) dx which is equivalent to that
of Eq. (3.142). Therefore,

[(x) = ®(x, 0+) — P(x, 0—) = AD(x) (3.148)

Note that similar flow conditions can be modeled by either a vortex or a
doublet distribution and the relation between these two distributions is

T=-u (3.149)

Comparing Eq. (3.141) with Eq. (3.147) indicates that a vortex distribu-
tion can be replaced by an equivalent doublet distribution such that

y(x)= —%@—) (3.150)
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PROBLEMS

3.1

3.2.

3.3.

34.

3.5.

Consider a distribution of two-dimensional sources around a circle of radius R.
The source strength is f(8) per unit arc length. Find an analytic expression for the
velocity potential of this source ring.

Consider the two-dimensional flow of a uniform stream of speed U.. past a source
of strength Q. Find the stagnation point(s) and the equation of the stagnation
streamline. Find the width of the generated semi-infinite body far downstream.
Consider the two-dimensional flow due to a uniform stream of speed U, in the x
direction, a clockwise vortex of circulation I' at (0,b), and an equal-strength
counterclockwise vortex at (0, —b). Find the stream function for the limit b— 0,
I'—> =, and where 2I'b — N, a constant.

Consider the two-dimensional flow of a uniform stream of speed U. along a wall
with a semicircular bump of radius R. Find the lift on the bump.

Consider the two-dimensional flow of a uniform stream of speed U, past a circle of
radius R with circulation I'. Find the lift force on the circle by an application of the
integral momentum theorem for the fluid region in between the circle and a
concentric circle at a large distance away.
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SMALL-
DISTURBANCE
FLOW OVER
THREE-

DIMENSIONAL
WINGS:

FORMULATION
OF THE

PROBLEM

Qqe of the first important applications of potential flow theory was the study of
lifting su'rfaces (wings). Since the boundary conditions on a complex surface
can considerably complicate the attempt to solve the problem by analytical
means, some simplifying assumptions need to be introduced. In this chapter
these assumptions will be applied to the formulation of the steady three-

dimensional thin wing problem and the sc i i i
. ene for the singularity sol
technique will be set. silartly solution

4.1 DEFINITION OF THE PROBLEM

Consider the finite wing shown in Fig. 4.1, which is moving at a constant speed
in an gtherwise undisturbed fluid. A cartesian coordinate system is attached to
the wing and the components of the free-stream velocity Q.. in the x y, 2
frame gf referencc are U., V., and W,, respectively. (Note that the tiovs: is
steady in this coordinate system.) The angle of attack « is defined as the angle
between the free-stream velocity and the x axis

1=

a=tan~

£

and for the sake of simplicity side slip is not included at this point (V,, = 0).
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FIGURE 4.1
Nomenclature used for the definition of the finite

wing problem.

If it is assumed that the fluid surrounding the wing and the wake is
inviscid, incompressible and irrotational, the resulting velocity field due to the
motion of the wing can be obtained by solving the continuity equation

V2p* =0 (4.1)

where ®* is the velocity potential, as defined in the wing frame of reference.
(Note that ®* is the same as ® in Chapter 3 and the reason for introducing this
notation will become clear in the next section.) The boundary conditions
require that the disturbance induced by the wing will decay far from the wing:

lim V&* = Q. 4.2)
which is automatically fulfilled by the singular solutions (derived in Chapter 3)
such as the source, doublet, or the vortex elements. Also, the normal
component of velocity on the solid boundaries of the wing must be zero. Thus,
in a frame of reference attached to the wing,

Vo*-n=0 (4.3)

where n is an outward normal to the surface (Fig. 4.1). So, basically, the
problem reduces to finding a singularity distribution that will satisfy Eq. (4.3).
Once this distribution is found, the velocity q at each point in the field is
known and the corresponding pressure p will be calculated from the steady-

state Bernoulli equation:

P2 _ P
pw+2Qm—p+2q (4.4)

The analytical solution of this problem, for an arbitrary wing shape, is
complicated by the difficulty of specifying boundary condition of Eq. (4.3) on a
curved surface, and by the shape of a wake. The need for a wake model
follows immediately from the Helmholtz theorems (Section 2.9), which state
that vorticity cannot end or start in the fluid. Consequently, if the wing is
modeled by singularity elements that will introduce vorticity (as will be shown
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later in this chapter), these need to be “shed” into the flow in the form of a
wake.

To overcome the difficulty of defining the zero normal flow boundary
condition on an arbitrary wing shape some simplifying assumptions are made
in the next section.

4.2 THE BOUNDARY CONDITION ON
THE WING

In order to satisfy boundary condition of Egq. (4.3), on the wing, the
geometrical information about the shape of the solid boundaries is required.
Let the wing solid surface be defined as

z=1n(x, y) (4.5)
and in the case of a wing with nonzero thickness two such functions will
describe the upper (,), and the lower (7,) surfaces (Fig. 4.2). In order to find
the normal to the wing surface, a function F(x, y, z) can be defined such that

F(x,y,z)=z-n(x,y)=0 (4.6)
and the outward normal on the wing upper surface is obtained by using Eq.
(2.26):

VP L (L2 o)
IVF| |VFI\ ox’ dy’
whereas on the lower surface the outward normal is —n.

The velocity potential due to the free-stream flow can be obtained by
using the solution of Eq. (3.52):

D, =Ucx+ W,z (4.8)

(4.7)

and, since Eq. (4.1) is linear, its solution can be divided into two separate
parts:

P*=0 + P, 4.9)
Substituting Eqs. (4.7) and the derivatives of Eqgs. (4.8) and (4.9) into the

zl}

N Ny
Ne
?—r = FIGURE 4.2
®  Definitions for wing thickness, upper and lower
\ ¥ surfaces, and mean camberline at an arbitrary
n spanwise location y.
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boundary condition (Eq. (4.3)) requiring no flow through the wing’s solid
boundaries results in

VF (B(D P 3P ) 1 (_an on 1>=0

|VF|

. = [ —— —_— oo ,
Vo*-n=Vo R + W, Ew 3

IVF| \ax ' =" 3y’ 5z

(4.10)

The intermediate result of this brief investigation is that the unknown is

the perturbation potential ®, which represents the velocity induced by the

motion of the wing in a stationary frame of reference. Consequently the
equation for the perturbation potential is

V=0 (4.11)

and the boundary conditions on the wing surface are obtained by rearranging
d®/3z in Eq. (4.10):

o® Iy ( 8(I>) on (8@)
= \Uet— ) +—{—|-W, onz= 4.12
oz ox ox dy \ 9y =0 ( )

Now, introducing the classical small-disturbance approximation will allow
us to further simplify this boundary condition. Assume

0| |30 |30
ox , dy ’ dz (4.13)
Qs Qu Q.

Then, from the boundary condition of Eq. (4.12), the following restrictions on
the geometry will follow:

an ’87)'
—| K1, —| 1 and
‘8x dy

o

U.

This means that the wing must be thin compared to its chord. Also, near
stagnation points and near the leading edge (where 97/dx is not small), the
small perturbation assumption is not valid.

Accounting for the above assumptions and recalling that W,, = Q.« and
U.=Q., the boundary condition of Eq. (4.12) can be reduced to a much
simpler form,

=tana~a <l (4.14)

P _ @_
ey =0.(2-a) (4.15)

It is consistent with the above approximation to also transfer the
boundary conditions from the wing surface to the x—y plane. This is
accomplished by a Taylor series expansion of the dependent variables, e.g.,

2

oP od 3*® 5
_— = =— +n—- , Y, 0) + 4.16
Y x,y,z=n) 32 (x,y,0)+n 352 (x, y,0) + O(n°) (4.16)

Along with the above small-disturbance approximation, only the first term
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from the expansion of Eq. (4.16) is used and then the first-order approxima-
tion of boundary condition, Eq. (4.12) (no products of small quantities are
kept), becomes

o2
5, & 0) = Q,,,( pe ar) 4.17)

A more precise treatment of the boundary conditions (for the two-
dimensional airfoil problem) including proceeding to a higher-order ap-
proximation will be-considered in Chapter 7.

4.3 SEPARATION OF THE THICKNESS
AND THE LIFTING PROBLEMS

At this point of the discussion, the boundary condition (Eq. (4.17)) is defined
for a thin wing and is linear. The shape of the wing is then defined by the
contours of the upper 7, and lower 7, surfaces as shown in Fig. 4.2,

2= nu(x, ) (4.180)
z=mnx, ) (4.18b)

This wing shape can also be expressed by using a thickness function 7, and a
camber function 7., such that

Ne=2(Nu + M) (4.19a)

=3 —m) (4.19b)

Therefore, the upper and the lower surfaces of the wing can be specified
alternatively by using the local wing thickness and camberline (Fig. 4.2):

N =1+ (4.20a)
m=n:- (4.20b)

Now, the linear boundary condition (Eq. (4.17)) should be specified for both
the upper and lower wing surfaces,

oP _(9n an,

E (x, Yy 0+) - ( ax )ro Qwa (4.21a)
on. 9o,

—(x y,0-)= (82 1")Qm Q.a (4.21b)

The boundary condition at infinity (Eq. (4.2)), for the perturbation potential
@, now becomes

TmVe =0 4.21¢c)

r—o

Since the continuity equation (Eq. (4.11)) as well as the boundary
conditions (Eqs. (4.21a—c)) are linear, it is possible to solve three simpler
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Q,, 7
—_— = 9,

+

0. —
—_— D,

FIGURE 4.3
% Decomposition of the thick cambered
D+ D [ .
}( ' 2+ P wing at an angle of attack problem into
=—__14a three simpler problems.

problems and superimpose the three separate solutions according to Egs.
(4.21a), and (4.21b), as shown schematically in Fig. 4.3. Note that this
decomposition of the solution is valid only if the small-disturbance approxima-
tion is applied to the wake model as well. These three subproblems are:

1. Symmetric wing with nonzero thickness at zero angle of attack (effect of
thickness)
V2P, =0 (4.22)

with the boundary condition:
8
- (x, y, 0t)= :l: Q°° (4.23)

where + is for the upper and — is for the lower surfaces.
2. Zero thickness, uncambered wing at angle of attack (effect of angle-of-
attack)

V20,=0 (4.24)
5D
< (6,7, 06)=-Q.a (4.25)

3. Zero thickness, cambered wing at zero angle of attack (effect of camber)
VP, =0 (4.26)
o,

93 1y, 0%
pyal G2 )~ L 2= (4.27)

The complete solution for the cambered wing with nonzero thickness at
an angle of attack is then
(D = Q] + ¢2 + ¢3 (4.28)

Of course, for Eq. (4.28) to be valid all three linear boundary conditions have
to be fulfilled at the wing’s projected area on the z = 0 plane.
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4.4 SYMMETRIC WING WITH NONZERO
THICKNESS AT ZERO ANGLE OF
ATTACK

Consider a symmetric wing with a thickness distribution of 7,(x, y) at zero
angle of attack, as shown in Fig. 4.4. The equation to be solved is

V2o =0 _ (4.29)

Here the subscript is dropped for simplicity. The approximate boundary
condition to be fulfilled at the z = 0 plane is

oP an,
. 0t)=%2——0 4.
(6,3, 05)=£ 310 (4.30)

The solution of this problem can be obtained by distributing basic
solution elements of Laplace’s equation. Because of the symmetry, as
explained in Chapter 3, a source/sink distribution can be used to model the
flow, and should be placed at the wing section centerline, as shown in Fig. 4.5.

Recall that the potential due to such a point source element o, is

o=—o (4.31)

where 7 is the distance from the point singularity located at (x0, Yo, 20) (see
Section 3.4)

r=Vix—xo +(y —y) +(z—z)° (4.32)
Now if these elements are distributed over the wing’s projected area on the
x—y plane (z, = 0), the velocity potential at an arbitrary point (x, y, z) will be
-1 (X0, yo) dxo dyo
470 Jying V(x — xo) +(y —yo)' + z?
Note that the integration is done over the wing only (no wake). The

normal velocity component w(x, y, z) is obtained by differentiating Eq. (4.33)
with respect to 2:

(4.33)

d(x,y,2)=

B(D Z j G(X(), yo) dxo d}’o (4 34]

W 2= G a2+ (Y + 2T

zh

Q. /’/ﬂ$;f<:\‘\\\ FIGURE 4.4

Definition of wing thickness function 1
at an arbitrary spanwise location y.

Y

i
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z A

Source/sink distribution

FIGURE 4.5
Q. o TAAA 444 AANA 4T Method of nl;odeling the thickness
132121123 y

problem

* .
> > a  source/sink
7{ } 13 X distribution.

To find w(x, y, 0), a limit process is required (see Section 3.14) and the

result is:
. o,
wix, y, 02) = lim w(x,y, 2)=% % (4.35)

where + is on the upper and — is on the lower surface of the wing,
respectively.

This result can be obtained by observing the volume flow rate due to a
Ax long and Ay wide source element with a strength o(x,y). A two-
dimensional section view is shown in Fig. 4.6. Following the definition of a
source element (Section 3.4) the volumetric flow X produced by this element is
then

2z =o0(x, y) Ax Ay
But as dz— 0 the flux from the sides becomes negligible (at z =0z) and only
the normal velocity component w(x, y, 0+) contributes to the source flux. The
above volume flow feeds the two sides (upper and lower) of the surface
elf:ment and, therefore X =2w(x, y, 0+) Ax Ay. So by equating this flow rate
with that produced by the source distribution,
T =2w(x, y, 0+) Ax Ay = o(x, y) Ax Ay

we obtain again

o(x, y
w(x, y,01) == ———25—) (4.35)
H
% = w-Ax-Ay
[ ] ] Source distribution
I with a strength o(x, y)
|
M|
vaal B FIGURE 4.6
%: —weAx-Ay Segment of a source distribution on the z =0
plane.
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Substituting Eq. (4.35) into the boundary condition results in

50 one ) _ , 06y)
A X Y, 0 =Xl —
oz (.7, 04) =+ Ox Q.= 2
or
a
o(x, ¥) =202 (x, y) (4.36)

So in this case the solution for the source distribution is easily obtained after
substituting Eq. (4.36) into Eq. (4.33) for the velocity potential and
differentiating to obtain the velocity field:

a"t(xo’ )’o)

dx, dy,
=04 ox
R I e v B
a t b
0. L (;; %) (x = x0) dx, dyo
ulx,y, 2) = E J'Wins [(x —x0)* + y—y)+ 22]3/2 (4.38)
on(xo,
0. n_(;:LO) (¥ — yo) dxo dy,
vy, 2)= E Lins [ - xo)2 +(y—y)+ 22]3,2 (439)
0. anx(;: Yo) , dxo dy,
W(x’ Y, Z) - Zr' ]wmg[(x — xo)z n (y — yo) + 22]3,2 (440)

The pressure distribution due to this solution will be derived later, but it is
easy to observe that since the pressure field is symmetric, there is no lift
produced due to thickness.

4.5 ZERO THICKNESS CAMBERED
WING AT ANGLE OF ATTACK—LIFTING
SURFACES

Here we shall solve the two linear problems of angle of attack and camber
together (Fig. 4.7). The problem to be solved is

V2 =0 (4.29)

with the boundary condition requiring no flow across the surface (evaluated at
z=0) as

oP an.
gz-(x, y,0%)= Qm( P a) (4.41)

This problem is antisymmetric with respect to the z direction and can be
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zA

/ n.(x, y)

LE. TE. x FIGURE 4.7
Q. TW“ (Leading edge) (Trailing edge) Nomenclature used for the
definition of the thin, lifting-

U, wing problem.

solved by a doublet distribution or by a vortex distribution. These basic
singularity elements are solutions to Eq. (4.29) and fulfill the boundary
condition (Eq. (4.2)) at infinity. As mentioned in Section 2.9, vortex lines
cannot begin and terminate in the fluid. This means that if the lifting problem
is to be modeled with vortex elements they cannot be terminated at the wing
and must be shed into the flow. In order to r:ot generate force in the fluid,
these free vortex elements must be parallel to the local flow direction, at any
point on the wake. (This observation is based on the vector product Q. X I in
Eq. (3.113).)

In the following section two methods of representing lifting problems by
a doublet or vortex distribution are presented. Also, as a consequence of the
small-disturbance approximation, the wake is taken to be planar and placed on
the z =0 plane.

DOUBLET DISTRIBUTION. To establish the lifting surface equation in terms
of doublets the various directional derivatives of the term 1/r in the basic
doublet solution have to be examined (see Section 3.5). The most suitable
differentiation is with respect to z, which results in doublets pointing in the z
direction that create a pressure jump in this direction. Consequently, this
antlsymmetric point element placed at (xo, Yo, 20) Will be used:

1 (X0, Yo)(z — 20)
e e e

D(x,y,2)=

The potential at an arbitrary point (x, y, z) due to these elements distributed
over the wing and its wake, as shown in Fig. 4.8 (z,=0), is

1 f u(xo, y0)z dxo dy,

P Yo 2) = —
(x Y ) 'wing+wake [(x - xO)2 + (y - )’0)2 +z

in e (4.43)

The velocity is obtained by differentiating Eq. (4.43) and letting z— 0 on
the wing. The limit for the tangential velocity components was derived in
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zj}

x—y plane

FIGURE 4.8
Lifting-surface model of a three-dimensional wing.

Section 3.14, whereas the limit process for the normal velocity component is
more elaborate (see Ashley and Landahl,*! p. 149).

b _1
u(x,y,Oi)=a=¢—§E

20x
od 13u
Ui, :0:‘: =—=F-—
&2, 0%) d 20y
W(x,y,Oi)=a_¢=if #(Xo, o)
0z 47 Juing+wake Gy _}’o)2
(x — x0) ]
x |1+
[ Vix —xo)" + (y —yo)* + 2° dxody,  (4.44)

To construct the integral equation for the unknown u(x, y), substitute Eq.
(4.44) into the left-hand side of Eq. (4.41):

1 #(xo, Yo) (x —x0)
4n fvving+wake (y - }’0)2 [1 * \/(x - x0)2 + (y - )’0)2 + Z2] de dyO

an.
=0.(3k-q) (as)

The strong singularity at y —y, in the integrals in Eqs. (4.44) and (4.45) is
discussed in Appendix C.

VORTEX DISTRIBUTION. According to this model, vortex line distributions
will be used over the wing and the wake, as in the case of the doublet
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Bound vortices

v Elements
=y, Ay

FIGURE 4.9
Possible vortex representation for the lifting-surface model.

distribution. This model is physically very easy to construct and the velocity Aq
due a vortex line element dl with a strength of AT will be computed by the

Biot-Savart law (r is defined by Eq. (4.32)):

Alr x dl
Aq= - in P (2.68b)

Now if vortices are distributed over the wing and wake (Fig. 4.9), then if
those elements that point in the y direction are denoted as y,, and in the x
direction as y,, then the component of velocity normal to the wing (down-
wash), induced by these elements is

-1 x — x9) + ¥:(¥ ~ Yo)
Wy, 2) =7 f . %x = Xo 5 ey dyy  (4.46)

It appears that in this formulation there are two unknown quantities per point
(Yx> v,) compared to one (p) in the case of the doublet distribution. But,
according to the Helmholtz vortex theorems (Section 2.9) vortex strength is
constant along a vortex line, and if we consider the vortex distribution on the
wing to consist of a large number of infinitesimal vortex lines then at any point
on the wing 3y,/3y = 87,/3x and the final number of unknowns at a point is

reduced to one. o
As was shown earlier (in Section 3.14) for a vortex distribution,

oD X,
u(x, y, 0%)=—>-= i——yy(z ) (4.47)
b | v:(x,y)

v(x, y, 0%) = a—y =% (4.47a)

2



100 LOW-SPEED AERODYNAMICS

The velocity potential on the wing at any point x (y =y,=const.) can be
obtained by integrating the x component of the velocity along an x-wise line
beginning at the leading edge (L.E.)

@(x, Yo, 0:‘:)= u(xl, Yo, Oi)dxl (448)

L.E.
and

AD(x, yo) = f o) d (4.49)

To construct the lifting surface equation for the unknown y, the wing-induced
downwash of Eq. (4.46) must be equal and opposite in sign to the normal
component of the free-stream velocity:

-1 j Yy(x —x0) + ¥:(¥ — yo)

— —n (9N
4.77 'wing+wake [(x - X(])z + (y - y0)2 + 22]3/2 dxo dy() - Qw( -

ox

Solution for the unknown doublet or vortex strength in Eq. (4.45) or Eq.
(4.50) allows the calculation of the velocity distribution. The method of
obtaining the corresponding pressure distribution is described in the next
section.

a) (4.50)

4.6 THE AERODYNAMIC LOADS

Solution of the aforementioned problems (e.g., the thickness or lifting
problems) results in the velocity field. In order to obtain the aerodynamic
loads the pressures need to be resolved by using the Bernoulli equation (Eq.
(4.4)). Also, the aerodynamic coefficients can be derived either in the wing or
in the flow coordinate system. In this case of small disturbance flow over
wings, traditionally, the wing coordinates are selected as shown in Fig. 4.10.
The velocity at any point in the field is then a combination of the free-stream
velocity and the perturbation velocity

q © o’ 3y oz »Sin (4.51)
L
ZA
D

— — — e C' X>
)—Q/' \ FIGURE 4.10
. Y,

Wing-attached coordinate system.
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Substituting q into the Bernoulli equation (Eq. (4.4)) and taking into account
the small-disturbance assumptions (Egs. (4.13) and (4.14), and a < 1) yields

p
pw—p=5(q2— 2

3P [3D\?> [3D\?
= g [Qﬁ cos® a + 2Q.. cos @+ (5;) + (8—y)

od\? P
+ <Qm sin o« + ———) - Qi] =pQ.— (4.52)
oz ox
The pressure coefficient C, can be defined as
2
PP~ q oP/ox
C,= =1—<—) =—-2— 4.53
Tl \o. 0. (*.53)
Note that at a stagnation point ¢4 =0 and C,=1. In the undisturbed flow

q=0Q. and C,=0. The aerodynamic loads, then, can be calculated by
integrating the pressures over the wing surface:

F=—| pndS (4.54)

wing
When the surface shape is given as in Eq. (4.6) then the normal to the surface
is given by Eq. (4.7), which with the small-disturbance approximation
becomes:
1 3 3 3 3
223
|VF| ox dy ox Ay

Consequently the components of the force F can be defined as axial, side, and
normal force

on, 8771)
F. = —p—=)dxd 4.
x Lng (pu = P o y (4.55)
arlu a"h
F, =J (pu -p ——) dx dy (4.56)
Y wing ay ' ay
E=[ (-pardy (4.57)
wing

Here the subscripts u and [/ represent the upper and lower wing surfaces,
respectively. Aerodynamicists frequently refer to the forces in the free-stream
coordinates (Fig. 4.10), and therefore these forces must be transformed
accordingly. For the small-disturbance case the angle of attack is small and
therefore the lift and drag forces are

D=F cosa+F sina

L=—-F sina+ F,cosa=F,
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Note that the evaluation of drag by integrating the pressure dis'tribution is
considered to be less accurate than the above formulation for the lift. .

In the case when the wing is assumed to be thin, the pressure difference
across the wing Ap is evaluated (positive Ap is in the +z direction) as

3P 3P ]
Ap=pi—Pu=Pe— megx—(x, y,0-)— [pm - pQa W (x, y,0+)

od o
=0 Sy 00 - Ty, 0-)] (4.58)

If the singularity distribution is assumed to be placed on the x—y plane then the
pressure difference becomes:

Source distribution. Because of symmetry,

P oP
—_— = — R 0—
(6,7, 04) =3 (5,3, 0-)

and
o oP ]
= - -— ,04)|=0 4.59a
Ap - me[ 9x (xr Y 0+) Ax (xr y ) ( )

Doublet distribution. In this case

13pu(x, y)

20
—— = :F
7 &y 0 =¥

and the pressure difference becomes

E} du(x, y)
Ap =pQ-—- AD(x, y)=—pQ-—"7 (4.59b)

where A® =, — D,

Vortex distribution. For the vortex distribution on the x—y plane t.he pressure
jump can be modeled with a vortex distribution ,(x, y) which points in the y
direction , such that

P
— (x, 5, 01) = £ 31,(x, )
ox
therefore, the pressure difference becomes
3
Ap = pQ.—- AD(x, y) = pQ=7y(x, y) (4.59¢)

The aerodynamic moment can be derived in a similar manner and as an
example the pitching moment about the y axis for a wing placed at the z =0
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plane is

M, o= J Ap x dx dy (4.60)
wing

Usually, the aerodynamic loads are presented in a nondimensional form. In
the case of the force coefficients where F is either lift, drag, or side force the
the corresponding coefficients will have the form

_F
IpQLS

where S is a reference area (wing planform area for wings). Similarly the
nondimensional moment coefficient becomes

F

(4.61)

M

Cyy=—
M 1pQ2sh

(4.62)

Here, again M can be a moment about any arbitrary axis and b is a reference
moment arm (e.g., wing span).

4.7 THE VORTEX WAKE

The analysis followed up to this point suggests that by using distributions of the
elementary solutions of Laplace’s equation, the problem is reduced to finding a
combination of these elements that will satisfy the zero normal flow boundary
condition on solid surfaces. However, as in the case of the flow over a cylinder
(Section 3.11), the solution is not unique and an arbitrary value can be selected
for the circulation I'. This problem is illustrated for the airfoil in Fig. 4.11,
where in case (a) the circulation is zero. In case (b) the circulation is such that
the flow at the trailing edge (T.E.) seems to be parallel at the edge. In case (c)
the circulation is larger and the flow turns downward near the trailing edge
(this can be achieved, for example, by blowing). W. M. Kutta (German
mathematician who was the first to use this trailing edge condition in a
theoretical paper in 1902) suggested that from the physical point of view, case
(b) seems to result in the right amount of circulation. The Kutta condition thus
states that: The flow leaves the sharp trailing edge of an airfoil smoothly and the
velocity there is finite. For the current modeling purposes this can be
interpreted that the flow leaves the T.E. along the bisector line there. Also,
since the trailing edge angle is finite the normal component of the velocity,
from both sides of the airfoil, must vanish. For a continuous velocity, this is
possible only if this is a stagnation point. Therefore, it is useful to assume that
the pressure difference there is also zero

Apre. =0 (4.63)

Additionally if the circulation is modeled by a vortex distribution, then this can
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Rear stagnation
point

(N

Rear stagnation

point
@/N

(c)

FIGURE 4.11

Possible solutions for the flow over an airfoil:
(a) flow with zero circulation; (b) flow with
circulation that will result in a smooth flow
near the trailing edge; (c) flow with circula-
tion larger than in case (b).

Rear
stagnation
point

be expressed as
Yre =0 (4.63a)

For a cusped trailing edge (where the angle is zero, as in Fig. 4.12), Eq. (4.63)
must hold even though the trailing edge need not be a stagnation point.

Next, consider the lifting wing of Fig. 4.9. As was shown in the case of
the cylinder, circulation is needed to generate lift. Assume that the vortex
distribution that is used to model the lift is placed on the wing as the bound
vortex y,(x, y), where the subscript designates the direction of the circulation
vector. But, according to Helmholtz’s theorem a vortex line cannot begin or
end in the fluid, and any change in y,(x, y) must be followed by an equal
change in y,(x, y). Consequently, the wing will be modeled by constant-
strength vortex lines, and if a change in the local strength of y,(x, y) is needed
then an additional vortex line will be added (or the vortex line is bent by 90°)
such that

M = ayy(x: y)
dy Sx

(4.64)

FIGURE 4.12
Flow near cusped trailing edge.
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This condition can also be obtained by requiring that the flow above the
. L . int
wing be vorticity free. Thus the vortex distribution induced velocity at a po

slightly above (z =0+) the wing is

u(x, 0+) = w (4.65a)
v(x, 04) =%y—) (4.65b)

In order than the flow resulting from this vortex distribution be vorticity free

we require:

8v%

1
@ _2<8x 8y> 3
which is exactly the same result of Eq. (4.64).' o o

The physical meaning is that any change in vorticity in one direction must
be followed by a change in a normal direction (as shown in Fig. 4.13, where
the wing and the vortex lines are in the x—y plane). Consgquently all vortex
lines must be either infinitely long lines or closed vortex rings. In the case of
the wing this means that the lifting vortices (bounq vortex) cannot end at the
wing (e.g., at the tip) and must be extended bphmd the wing into a wake.
Furthermore, for a lifting wing a starting vortex is created that may be located

tream.

fr dOI\\Iv;(St, the wake shape must be considered. If the wake ’is to !)e mpdeled
by a vortex sheet (free vortex sheet) then from physnc?l considerations it must
be different from the bound circulation by not creating |02{ds. Th§ pressure
difference across the sheet is obtained by a generali;atlon (with vector
notation) of Eq. (4.59c), and if there is no pressure difference across the

vortex sheet then

}<3Yx(x, y) on(x y)) —0
ox ay

Ap=pqXy=0

FIGURE 4.13

Method of terminating a bound (lift-
ing) vortex; since vortex lines cannot
end in a fluid, the bound vortices are
turned back parallel to the free stream.




106 LOWSPEED AERODYNAMICS

or
gxXy=0 (4.66)
where y=(v,, ¥y, ¥.).- This means that the velocity on the wake must be
parallel to the wake vortices.
This consifigration will be very helpful when proposing some simple
models for the .llftlng wing problem in the following chapters.
A small disturbance approximation applied to the wake model results in

Q.Xy=0 (4.66a)

4.8 LINEARIZED THEORY OF SMALL-
DISTURBANCE COMPRESSIBLE FLOW

tI'he potential flow model was based so far on the assumption of an

1ncompressible fluid. In the case when the disturbance to the flow is small, it is

mssnble to extend the methods of incompressible potential flow to cover ;:ases

ywth §mall effects of compressibility (e.g., low-speed subsonic flows). To

:rl:vefstlgate this possibility, the continuity equation (Eq. (1.21)) is rewrittén in
e form;

%1(%+uz—f+ug—;’ w%)=%+z—: > (4.67)

and the inviscid momentum equations (Eqs. (1.31)) are
%Hg—;‘ﬂgy‘i w%;pl% (4.68a)
%*“%*“%*W%=%% (4.68b)
%—‘:}+u%’+v§—;/+wz—:=:pl% (4.68¢)

For an isentropic fluid the propagation speed of the di
turb.
sound) can be defined as P 1sturbance a (speed of

a=-" (4.69)

and consequently the pressure terms in the momentum equation can be
replaced (e.g.,

J, )
9P _ 0P

Ax ox’

in the x direction). Now multiplying the momentum equations by u, v, and w
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respectively, and adding them together leads to

L @-+w@+u2@+v2@+wz§1+uv§y—+uv@
btV T T T Uy T ey ax

du aw v w —a* ( 3p dp ap)
t+tuw—+uw—+uw_—+vw—=—\u—+v_—+w_—
oz ox oz gy p ox 3y o9z

Replacing the right-hand side with the continuity equation and recalling the

irrotationality condition (Eq. (2.12), V X ¢ = 0), results in

A LA LN PR
( a’/ ox a*/ dy a*/ 3z
uv ou uw Svu uwdw 13p du du ow
pUUOU _ZUWOU N uWW L 2P P o wD=0 (470
2oy “doz ‘o pa “a "a Y (4.70)

Using the velocity potential ® as defined in Eq. (2.19), and assuming that the
free-stream velocity Q.. is parallel to the x axis (thus Q.. becomes U..), and that
the velocity perturbations caused by the motion of the body in the fluid are

small, we get
‘a(p‘
) ay b

Based on these assumptions, the velocity components, in terms of the
perturbation velocity potential, are

Foli ] ad
—_— —| &< U, 4.71
ox oz U ( )

P

=U,+—

“ ox
o®

y=—— 4.72)

9y
_oo
EY

Assume steady state flow (8/8¢ =0), and neglecting the smaller terms in Eq.
(4.70), based on Eq. (4.71), this results in

2 3
u 8u_8_v w___0

1-5) ot e
< a’/dx 93y 9z
By using the energy equation for an adiabatic flow, it can be shown that the

local speed of sound can be replaced by its free-stream value and the
small-disturbance equation becomes

2 2
Fo o P 0 4.73)

—_— 2 — — —_—
(1= M. ox*  dy* 38z

For time-dependent flows the 3p/5t term in Eq. (4.70) needs to be evaluated
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by using the Bernoulli equation (Eq. (2.33)), but the result will introduce

additional time-dependent terms. However, in the case of steady-state flows,
the effect of compressibility is easily evaluated.

By using the simple coordinate transformation named after the German
and British scientists, Ludwig Prandtl and Herman Glauert (circa 1922-27)
and called the Prandtl-Glauert rule, for subsonic flow ’

_ X
MET-ME
M=y 4.749)
Zy=1z

Equation (4.73) can be reduced to Laplace’s equation, and the results of
incompressible flow can be applied by using

8 1 3

oxy VI—-MZox
For example, the pressure coefficient of Eq. (4.53) becomes
0P/xy _ odb/ox 1

C,=-2 2
" 0. 0. Vioi (4.75)
Similarly the lift and moment coefficients become
_ Cy(M =0)
2+ i
Oh L ) FIGURE 4.14
0.0 0.2 0.4 0.6 0.8 0 Variation of two-dimensional lift curve

slope with Mach number using Prandtl-
M (Mach number) Glauert formula.
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which indicates that at higher speeds the lift slope is increasing as shown by
Fig. 4.14. Also, note that according to Eq. (4.74) the x coordinate is being
stretched as the Mach number increases and therefore the results for M =0
and M >0 are for wings of different aspect ratio.

Based on the results of Fig. 4.14 (for a two-dimensional airfoil), for
small-disturbance flows the potential flow based models of this chapter are
applicable at least up to M., = 0.6.
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PROBLEMS

4.1. Consider a two-dimensional parabolic camberline with € being its maximum
height. The equation of the camberline is then:

n)=ae[1-%]

and the free-stream components in the airfoil frame of reference are (U, W.).
Derive the formula for the chordwise normal vector n and the exact boundary
conditions on the camberline (by using Eq. 4.10).

4.2. A two-dimensional distribution of doublets oriented in the vertical direction, with
constant strength p = (0, u), is placed along the x axis (0 <x < ). Show that this
doublet distribution is identical to a point vortex at the origin and at x = . What
is the strength of the point vortices?

4.3. Show that a vortex distribution of strength y(x) along the x axis (x, <x <) is
equivalent to a distribution of doublets oriented in the vertical direction, and the
strength of this doublet distribution is:

!‘(x)=J Y (xo) dxo X <x<®
x1

(Show that both singular distributions have the same velocity potential and
velocity field.)



CHAPTER

S

SMALL-
DISTURBANCE
FLOW OVER
TWO-DIMENSIONAL
AIRFOILS

The strategy presented in Chapter 3 postulates that a solution to the potential
flow problem can be obtained by superimposing elementary solutions of
Laplace’s equation. Thus, the solution consists of finding the “right” combina-
tion of these elementary solutions that will fulfill the zero normal flow
boundary condition. Using this approach, in the previous chapter the
small-disturbance problem for a wing moving with a steady motion was
established. This treatment allowed us to separate the problem into the
solution of two linear subproblems namely the thickness and lifting problems.
In this chapter the simpler two-dimensional case of both the airfoil with
nonzero thickness at zero angle of attack and the lifting zero-thickness airfoil
will be solved, by using analytical techniques. These solutions can then be
added to yield the complete small-disturbance solution for the flow past a thin
airfoil.

5.1 SYMMETRIC AIRFOIL WITH
NONZERO THICKNESS AT ZERO
ANGLE OF ATTACK

Consider the two-dimensional symmetric airfoil, with a thickness distribution
of 7,(x), at zero angle of attack, as shown in Fig. 5.1. The velocity field will be

110
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+n,(x)
Q. -
¢ *  FIGURE 5.1 o
Two-dimensional thin symmetric air-
—in(x) foil at zero angle of attack.

obtained by solving the continuity equation:
Vo =0 (5.1

with the boundary condition requiring that the flow normal to the airfoil upper
(+7,) and lower surface (—1,) be zero:

P _, dn, 5.2)
g(x, O:i:)— + dx Qa,

This equation actually states that the sum of the free-stream and the
airfoil-induced normal velocity components is zero on the surface
dn, _
w(x, 0x) F <dx> 0.=0.

Equation (5.2) is the two-dimensional version of {he three‘-dimensio.nal
boundary condition (Eq. (4.30)) and @ is the perturbation velocity potential.
Recall that the boundary condition has been transferred to the z =0 pl.ane..
Also, the boundary condition requiring that the disturbancej d}le to the a_lrfoﬂ
will decay far from it (Eq. (4.2)) is not stated because it is automatically
fulfilled by the source element. .

Because of the symmetry of the problem (relative to the z =0 plane) th.e
use of a source distribution is selected that inherently has such a symmetric
feature. These sources are placed on the x axis from x =0 to x=c, as shown. in
Fig. 5.2. The potential of a source distribution can be obtained by observing
the potential due to a single source element of strength g, located at (x,, 0)

O’Ol

21

=2y V(x — xo)? + 22
2

P, = nr

=20 10 [(x — x0)* + 27] (5.3)
4n
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The lqcal radial velogity component g, due to this element at an arbitrary point
(x, z) is (the tangential component is zero):

Jo

= (5.4)

zn ca)rtesian .cogrdinates this can be resolved into the x and z directions as
u, w)=gq,(sin 6, ; . ¢ ns
Eq, (5.3;{( cos 8). The same result can be obtained by differentiating

a(bo(, _ 0o X — Xq

T e 2m(x-xe)i+ 2l (5.5)
_ aq)(,o_ E z
R (5.6)

‘As shown in Fig. 5.2, the airfoil thickness effect is modeled by a
continuous o(x) distribution along the x axis. The velocity potential and the
resulting velocity field can be obtained by integrating the contribution of the
above point elements over the chord (from x =0, to x =c); however, now
0(xo) is the source strength per unit length. ’ ’

1 C
(x,2) =5 fo o(xo) In Vx —xo)? + 27 dx, (5.7)

N X~ xg
u(x, z)—znfO G(xo)mdxo (5.8)

wie, 2) =5 [ o) ——
s = — g -_-—

2 Jy T (x —x0)* + 22 xo (59)
In order to substitute the velocity component w(x, 0) into the boundary

condition (Eq. (5.2)) the limit of Eq. (5.9) at z =0 is need i
results of Section 3.14, ) needed: Following the

*x)

w(x, 0+) = I =4 9%
(5 04)= lim w(z, 2) =+~ (5.10)
ZA
A___q
i
7 (x,2)
/
ry/
7/
o(x) 4 ]
Q. N .
N FHGURE sz

0 Source distribution model for the
Xg, 0) thin symmetric airfoil.
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zA

o(x)
Ax
————— wi(x, 0+)
|t _ FIGURE 5.3
; IIHHV\ "© A Ax long segment of a source distribution
- wix, 0-) along the x axis.
where + is on the upper and — is on the lower surface of the airfoil,

respectively. Similarly to the three-dimensional case, this result can be
obtained by observing the volume flow rate due to a Ax long element with a
strength o(x), as shown in Fig. 5.3. As dz—0, the flux from the sides of the
small element becomes negligible, compared to the flux due to the w(x, 0%)
component. The volumetric flow due to a Ax wide source element is o(x) Ax,
which must be equal to the flow rate fed by the two sides (upper and lower) of

the surface 2w(x, 0+) Ax. Therefore,
2w(x, 0+) Ax = o(x) Ax
and we obtain again
w(x,0+£)== O—(ZX—) (5.10)

Substituting Eq. (5.10) into the boundary condition results in
P dn, a(x)
—_ =+—0Q,.,=4+—>

5; B 0E) =250 2

or

a(x)=2dezZ—' (5.11)

So in this case the solution for the source distribution is easily obtained after
substituting Eq. (5.11) into Egs. (5.7-5.9):

D(x, z)=%°fﬂ%x(x—0)ln V(x — xo)* + 27 dx, (5.12)
Q. [€dnxo) X —Xp

u(x, z)=— J’ I P dx, (5.13)
Q.. (€ dn.(xy) z

w(x, z) =— J & (x4 2 dxg (5.14)

It is clear from these equations that the u component of the velocity is
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symmetric, and the w component is antisymmetric (with respect to the x axis).
Therefore the pressure distribution is the same for the top and bottom surfaces
and is evaluated at z = 0. The axial velocity component at z =0 is then

_ Q. [“dnxe) 1
u(x, 0) = I dx  (x —xg) dxo

and the pressure is obtained by substituting this into the steady-state Bernoulli
equation (Eq. (4.52)):

(5.15)

oD
P = P==—pQx— = —pQuu(x, 0) (5.16)

and in terms of the pressure coefficient

p—p- u(x, 0)
C,= =-2
7 3pQ% Q.
By evaluating the velocity at z =0, as in Eq. (5.15), the pressure coefficient
becomes

(5.17)

¢, =22 [ntxd 1
i o dx (x—xo) °

n
Since this pressure distribution is the same for the upper and for the lower
surface the pressure difference between the upper and lower surface is zero:

(5.18)

Ap=p—p.=0 (5.19)
and the aerodynamic lift per unit width is
L=L Apdx=0 (5.20)

For the drag force per unit width calculation the contributions of the upper and
lower surfaces need to be included using Eq. (4.55):

< dn < —dny < d
D___f u__‘d_x_j ___'dx.__zj an:
()p dx Opl d.x opud.xdx (5'21)

Substit}Jting the pressure from Egs. (5.15) and (5.16) into Eq. (5.21) and
observing that the integral of a constant pressure p.. over a closed body is zero
yields

dn(xo) dn,(x)
Q. J" J’C dx dx
D o _2 = P —
p A X =0 dxg dx (5.21a)

It can be shown, using the symmetry properties of the integrand (see Moran,*!
pp- 87-88) that the drag is zero:

D=0 (5.21b)
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This result can be obtained directly from the Kutta—Joukowski theorem
(Section 3.11). Thus, the symmetrical airfoil at zero angle of attack does not
generate lift, drag, or pitching moment. Evaluation of the velocity distribution
needs to be done only to add this thickness effect to the lifting thin airfoil
problem (as derived in the next section).

To obtain the velocity components from Eqgs. (5.13) and (5.14) for points
not lying on the strip (0<x<c, z=0), the integrals can be evaluated
numerically or in closed form for certain simple geometries. However, when
the axial component of the velocity or the pressure coefficient is to be
determined on the airfoil surface using Eqs. (5.15) and (5.18) it is seen that the
integrands become infinite at x =x, and the integrals are not defined. It is
noted that if the thickness is increasing at x = Xo, the integrand goes to —® as
x, is approached from the left and to + as x, is approached from the right
(e.g., in Eq. (5.15)) and the integrand is antisymmetric in the neighborhood of
X = Xo-

If the integral in Eq. (5.13) were evaluated at the actual airfoil surface
the integrand would not be singular. It is the transfer of the boundary
condition to the chordline and the subsequent result that the velocity
components on the surface are equivalent to the components on the chordline
that has led to the appearance of the improper integral for the surface
pressure. It is expected from physical considerations that the surface pressure
should be determinable from Eq. (5.18) and aerodynamicists generally agree
that the Cauchy principal value of the integral is the appropriate one. The
Cauchy principal value of the improper integral

[ " Fxo) do

where
f(xg)— at Xo=X and a<x<b

is defined by the limit

As an example, consider the following integral where the limits can be
evaluated in closed form:

[ [ [
= lim Y L
o X —Xo e>0LlJo X —Xo x+eXo — X

= lim [—In (x — xo)I§ "¢ — In (xo — X)|5+]

€—0

=lim[—lne+lnx—ln(c—x)+lne]=ln
e—0 cC—X

Note that in the second integral the sign was changed to avoid obtaining the
logarithm of a negative quantity.
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In practice, if the integral can be evaluated in closed form the correct
Cauchy principal value can be obtained by simply ignoring the limit process as
long as the arguments of all logarithm terms are taken as their absolute values,

A frequently used principal value integral in many small-disturbance flow

applications is called the Glauert integral (see Glauert,>? pp. 92-93), which has
the form

f” cos nf, T sinno
0

_rsinnb =0,1,2,.... 5.
cos @p—cos @ °  sin@ n=0, (5.22)

Example: Flow past an ellipse. To demonstrate the features of the pressure
distribution obtained from this small-disturbance solution consider an ellipse with
a thickness of ¢ - ¢ at zero angle of attack (Fig. 5.4). The equation for the surface

is then
c 2
X —= .

BING)

N

or
n=*tVx(c —x) (5.23)
The derivative of the thickness function for the upper (+) and lower (—) surfaces
is then
dn_ t ¢—-Xx

i _—_——
dx 2Vx(c-x)
The velocity distribution on the ellipse is obtained by substituting this into Eq.
(5.15) (note that 7 here is % 7,)
Q. [t ¢—2x, 1
- = dx 5.24
7T Jo 2Vxo(c —x0) (x —=x5) ° (.24

The integral needs to be evaluated in terms of its principal value. In order to be
able to use Eq. (5.22) the following transformation is introduced:

u(x, 0) =

x=§(1—cos 0) (5.25)
and

dx = gsin 046 (5.25a)
which transforms the straight chord line into a semicircle. The leading edge of the

Z
fc n(x)

4
— F‘\C —»  FIGURE 5.4
\j'__/ X Thin ellipse in a uniform flow.
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ellipse (x =0) is now at 6 =0 and the trailing edge (x =c¢) is at 8 = z. With the
aid of this transformation d7,/dx becomes

dn, ¢ c—c(1—cos 8) ,cos 6

dx Z@I—wse)[c—g(l—ws())]— sin 6

Substituting this into the u component of the velocity (Eq. (5.24)),

_1Q. ” cos 8,
u, 0)= 7w Jo cos6,—cos 6

dé,

and with the aid of Glauert’s integral (Eq. (5.22)) for n =1, the axial velocity
component reduces to

u(x, 0) =tQ. (5.26)
The pressure coefficient thus becomes
C,=—2 (5.27)

which indicates that the pressure coefficient is' a constant. This result is plott'eglm
Fig. 5.5 and compared with the exact solutlop obtained _by complet): var;at. e;
(Van Dyke®? p. 52). The maximum of |~C,| is well predicted but the solu 1?
near the front and rear stagnation points is incorrect. .As the thickness r? i0
decreases the pressure distribution becpmes more flat with a smaller stagnation
region and therefore the accuracy of this solution improves.

0.4

0.6fr

t=0.2

0.8}

Sise

FIGURE 5.5 o - .
Calculated chordwise pressure distribution on a thin ellipse.
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5.2 ZERO-THICKNESS AIRFOIL AT
ANGLE OF ATTACK

It was demonstrated in Section 4.3 that the smali-disturbance flow over thin
airfoils can be divided into a thickness problem and a lifting problem due to
angle of attack and chord camber. In this section the lifting problem will be
addressed, using the classical approach (Glauert,>? pp. 87-93). To illustrate
the problem, consider a thin cambered airfoil, at an angle of attack «, as
shown schematically by Fig. 5.6. The flow is assumed to be inviscid,
incompressible, and irrotational and the continuity equation is

Vo =0 (5.28)
The airfoil camberline is placed close to the x axis with the leading edge at
x =0, and the trailing edge at x = c. The camberline of the airfoil is given by a
known function 7, = n.(x). The boundary condition requiring no flow across
the surface, as derived in Chapter 4 for the small-disturbance flow case, will be
transferred to the z = 0 plane:
3P dn, : dn.
™ (x,0£)=0. (—JZ— cos & — sin a) = Qm< dz - oz) (5.29)
This equation actually states that the sum of the free-stream and the
airfoil-induced normal velocity components is zero on the surface

dn
w(x, 0+) — w( <
(x, 0£) - 0.( T
Also, note that this boundary condition can be obtained by requiring that the
flow stay tangent to the camberline (see inset to Fig. 5.6). Thus, the slope of
the local (total) velocity w*/u* must be equal to the camberline slope:
w*_39*/dz _dn.
u* o®*/ox  dx

- a)=0.

< A n(x)
< u* ra
* : d
w /
/
dn; /
/
dx/
/ n.(x)
=~ ¢
VN
\
_-/ -
Os c x
mwx

U

FIGURE 5.6
Thin cambered airfoil at an angle of attack.

SMALL-DISTURBANCE FLOW OVER TWO-DIMENSIONAL AIRFOILs 119

Recalling the definition of the total potential ®* (Eq. (4.9)), this can be
rewritten as

<a<p+ v, 2% wg,,)-(—d"‘, 1)=V<I)*-n=0
Z

o 3 dx
where the normal vector n can be described in terms of the camberline 7.:
dn. )
={-=—1
" ( dx

Enforcing the small-disturbance assumption (e.g., W.~ Q.a, 0®/9x K U.,
and U.= Q. cos @~ Q.) reduces this to the same boundary condition as in
Eq. (5.29).

When considering a solution, based on a singularity element distribution,
the antisymmetric nature of the problem (relative to the x axis, as in Fig. 5.6)
needs to be observed. In Section 4.5, both doublet and vortex distributions
were presented to model this antisymmetric lifting problem. Traditionally,
however, the solution based on the vortex distribution is used, probably
because of its easy derivation and ‘“physical descriptiveness.” Also, the
boundary condition requiring that the disturbance due to the airfoil will decay
far from it (Eq. (4.2)) is not stated since it is automatically fulfilled by either
the vortex or doublet elements. Consequently, a model based on the
continuous vortex distribution (as shown in Fig. 5.7) is suggested for the
solution of this problem. Furthermore, the vortex elements are transferred to
the z =0 plane, following the assumptions of small-disturbance flow where

. <K C.

! To demonstrate the basic features of the proposed vortex distribution,
consider a point vortex in the x—z plane, located at a point (x,, 0) with a
strength of y,. Here y,= y(x)dx at x =x, in Fig. 5.7. The velocity potential
due to this element at a point (x, z) in the field is then

Yo Yo _1< Z )
=—Lg=-"2 5.30
Py 2n8 27 X = X (5-30)
A
(x, 2)
g
/ u

y(x) r/
/

FIGURE 5.7
Vortex distribution based model for the thin
lifting airfoil.
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The velocity due to a vortex points only in the tangential direction, thus
99=—5— q,=0 (5.31)

whgr.e r=V(x — x,)’ + z2. The minus sign is a result of the angle 6 being
positive coupterclockwise in Fig. 5.7. In cartesian coordinates the components
of the velocity will be (u, w) = go(sin 8, —cos 8), or by simply differentiating
Eq. (5.30): '
o, _Yo z

ox 2m(x—xo)’+22
_8<I>,o__y(, X —Xg

3z 27 (x — x0)* + 22

u=

(5.32a)

Note that if the field point is placed on the x axis, then the velocity due to the -

above element, normal to the x axis, is

_ —Yo
v 27(x — x0)

As shown in Fig. 5.7, this problem is being modeled by a vortex
distribution that is placed on the x axis with the small-disturbance boundary
conditions being fulfilled also on the x axis. The velocity potential and the
resulting velocity field, due to such a vortex distribution (between the airfoil
leading edge at x =0, and its trailing edge at x =¢) is

4

D(x, z)=— %t LC y(xo) tan™! ( ) dx, (5.34)

X — Xo

1 C
u(x, Z) =§;J; Y(xo)mdxo (5.35)
1 -
w(x, z) = "tho y(xo)(x—_x#dxo (5.36)

Here, y(x,) is the vortex strength per unit length at x,.

Since the boundary condition will be fulfilled at z =0, it is useful to
evaluate the velocity components there. The x component of the velocity
above (+) and under (—) a vortex distribution was derived in Section 3.14:

u(x, 0+) = linil0 u(x, z) =—i-}:2(—x2 (5.37)

for 0<x<c, and this result is shown schematically in Fig. 5.8. The w
component of the velocity at z =0 can be obtained directly from Eq. (5.36)
and is

(5.38)

X

1 (€ dx
wis, 0= =5~ [ y(x) 22
()

(5.32)

(5.33)
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Ap(x) = pQ.y(x)

Y (x)
u(x,0+) = )%X)
—_—
LA A s, -
(SAAVENALNAAAGASNAGLASVEAAL A gra 7 FIGURE 5.8
* Ly Tangential velocity and pressure difference
ux,07)=—5 due to a vortex distribution.

The unknown vortex distribution y(x) has to satisfy the zero normal flow
boundary condition on the airfoil. Therefore, substituting the normal velocity
component from Eq. (5.38) into the boundary condition (Eq. (5.29)) results in

I®(x,0) _ dn,
T—w(x, 0)= Qm(dx - a)

or

L[y 2o g (2 )
_1 N 0O<x<c (539
anY("‘))x—xo 0.(Fe-a x<c (5.39)

This is the integral equation for y(x). However, the solution to this equation is
not unique and an additional physical condition has to be added for obtaining a
unique solution. Such a condition will require that the flow leave the trailing
edge smoothly and the velocity there be finite

V® <o (at trailing edges) (5.40)

This is the Kutta condition discussed in Section 4.7 which can be interpreted
now as a requirement for the pressure difference Ap [or y(x)] to be equal to
zero at the trailing edge:

y(x=c)=0 (5-41)

Once the velocity field is obtained, the pressure distribution can be
calculated by the steady-state Bernoulli equation for small-disturbance flow
over the airfoil (Eq. (5.16)):

P —pu=—pQou(x, 0£) = :Fpng (5.42)

The pressure difference across the airfoil Ap (positive Ap is in the +z
direction), where above the airfoil
ob y

“Z(x, 04)=++
ax(x, ) >
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and at the airfoil’s lower surface

el y
—(x, 0=)=—+
e P07 =—3

is
= = Y "I_
Ap=pi=p,=p=— me<— 5) - [pm - me<§)] =pQ.y  (5.43)
The pressure coefficient with the small disturbance assumption then becomes

P~ P~ Y
G = =F - 5.
FipQ2 0o (5-44)

and the pressure difference coefficient is

AC, =2~ (5.44q)

a0

5.3 CLASSICAL SOLUTION OF THE
LIFTING PROBLEM

The solution for the velocity distribution, pressure difference, and the
aerodynamic loads on the thin, lifting airfoil requires the knowledge of the
vortex distribution y(x) on the airfoil. This can be obtained by solving the
integral equation (Eq. ((5.39)), which is a form of the zero normal flow
boundary condition. The classical approach (e.g., Glauert,>? p. 88) is to
approximate y(x) by a trigonometric expansion and then the problem reduces
to evaluating the values of this expansion’s coefficients. Therefore, a transfor-
mation into trigonometric variables is needed. Such a transformation is
described by Fig. 5.9 and is

c
x=i(1 —cos 6) (5.45)
and
C .
dx =5 sin 0de6 (5.45a)
!
|
|
!
I 8
6=0 { 0=n
0 X o2 c *  FIGURE 5.9
Leading Trailing Plot of the transformation x =

edge edge ¢/2(1 —cos 6).
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Note that the airfoil leading edge is at x = 0 (6 = 0), and the trailing edge is at
x = ¢ (@ = ). Substituting Eq. (5.45) into Eq. (5.39) results in the transformed

integral equation.

-1 (" sin 6, d6, [dnc(e) ]

— =0 -« 5.46

2r fo v(6o) cos 8 —cos 6, 0 dx ( )
o<é<nm

This integration with 6, should hold for each point x (or €) on the airfoil. The
transformed Kutta condition now has the form

y(m)=0 (5.47)

The next step is to find a vortex distribution that will satisfy these last two
equations. A trigonometric expansion of the form

> A, sin (n8)
n=1

will satisfy the Kutta condition, and is general enough that it can be used to
represent the circulation distribution. However, experimental evidence shows
a large suction peak at the airfoil’s leading edge, which can be modeled by a
function whose value is large at the leading edge and reduces to 0 at the
trailing edge. Such a trigonometric expression is the cotangent function, which
will be included, too, in the proposed vortex distribution:

A te—A 1+cos @
0 = Gn e

The suggested solution for the circulation is shown graphically in Fig. 5.10, and
in order to cancel the 2Q. term on the right-hand side of Eq. (5.46) the
proposed function for the vortex distribution will be multiplied by this
constant:

©

¥(8) = 2Qm[A0 1—%’ + 3 Aysin (nB)] (5.48)

An additional advantage of the first term is that it induces a constant
downwash on the airfoil, as will be evident later on (see Eq. (5.53)). .In order
to determine the values of the A, constants, Eq. (5.48) is substituted into Eq.

FIGURE 5.10
Schematic description of the first four terms in the series describing the circulation.
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(5.46):

1 r” 1+cosf, & . sin 6, dé, dn.(6)
-— | m[,q —+> A4, 6, ]\= w[c“_
27 fo 0 ® sin 6, ,.21 sin (n6,) cos 8, — cos 6 dx a]

(5.49)

In this equation, each point 6 is influenced by all the vortex elements of the

airfoil—this requires the evaluation of the integral for each value of ¢,
Recalling Glauert’s integral

f" cos nf, 7T sin n@
0

cosBo—~cos@® °  sin@ n=0.12,... (5.22)

and replacing 1 by cos 06, the first term of the integral becomes

1 f" cos 08y + cos 8, sin 6, dé6,
Ag
0

1
sin 6, cos 8, —cos @ ;AO(O tm)=—4

whereas for the terms with the coefficients A A,, ..., the following
trigonometric relation is used:

1
sin n6, sin 6, =§[cos (n —1)8,—cos (n + 1)6,] n=12,3,...
This allows the presentation of the nth term in the following form:

1 (" . sin 6, d@,
-— A 6)] ——2
.71'](; [A, sin (n 0)]coseo—c059

cos 6, — cos @

_A b
=—2”"f [cos (n — 1)6, — cos (n + 1)6,]
0

and by using Glauert’s integral this reduces to

A, [sin (n=1)6 sin(n+ 1)9]
2n i sin @ sin 6

A, sin 6 cos (nﬂ)]
= — —— ._.2 —_— =
) [ Sin 0 A, cos (nf)

Substituting this into Eq. (5.49) yields

~Ao+ D A, cos (n6) = 4n.(6) -a (5.50)
n=1 dx

This is actually a Fourier expansion of the right-hand side of the equation,

which includes the information on the airfoil geometry. Multiplying both sides

of the equation by cos m8 and performing an integration from 0— n, for each

value of n, will result in the cancelation of all the nonorthogonal multipliers

(where m #n). Consequently for each value of 7 the value of the correspond-
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ing coefficient A, is obtained:

1 ("dn.(6)
S do n=0 (5.51)
A=« nJ; dx
A =zf’dnc—(6)cosn0d6 n=1,23,... (5.52)
T A dx

Note that Eq. (5.50) can be rewritten as an expansion of the downwash
distribution w = w(6) on the airfoil as

2= —A4y+ S A, cos (n6) (5.53)
Q‘m n=1
and it is clear that the downwash due to the first term (multiplied by A,) of the
vortex distribution is constant along the airfoil chqrd. .

The slope dn./dx can be expanded as a Fourier series such that

d"fT(e) = 20 B, cos (n6) (5.50a)

and a comparison with Eq. (5.50) indicates that
Bo=a_A0 Bn=An n=1,2,...°°

This allows the simplification of Eq. (5.53) such that .the angle of attack and
camber contributions to the downwash are explicitly displayed. A 'replacement
of the A, coefficients with the B, coefficients in Eq. (5.53) results in

—5— =—a+ D, B,cos(nh) (5.53a)
o n=0

54 AERODYNAMIC FORCES AND
MOMENT ON A THIN AIRFOIL

For a given airfoil geometry, the mean camberline 7.(x) is a known function
and the coefficients Ay, A;, A,,... can be co'mp}xt?d by Eq. (5.51) and Eg
(5.52). The pressure difference across the t}!m letmg surface Ap(x) ;:an de
calculated by Eq. (5.43) and the aerodynamic coe'ﬂ”ments can be eva uazlg .
These aerodynamic coefficie 1ts are usially “efined in the fre\?-stre im coor 1;11-
ate system such that the lift is nnrmal and the dlag.fm.'ce is parallel to (tj e
free-stream flow. In order to determine the aerodyngmlc lift and drag, ~onsi e(;
the simple case shown in Fig. 5.11. The pressure difference can be evaluate

by using Eq. (5.43):
Ap(x) = pQ.y(x)

and since « is small Q. is used instead of Q.. cos a. The normal force F, is then

F, = f Ap(x) dx = fo pQxy(x) dx = pQ.I
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L
e~ Fes
a -
Q-
FIGURE 5.11

Fluid dynamic forces acting on a two-dimensional zero thickness airfoil.

where
r= f y(x) dx (5.549)
(1}
Also, the flat plate of Fig. 5.11 is very thin and the x component of the force is
Zero:
E=0

Based on this formulation, the lift and drag forces become
L=F D=Fa«

On the other hand, the Kutta-Joukowski theorem in Section 3.11 clearly states
that the lift is perpendicular to the free-stream Q... Thus, the aerodynamic lift
is

L=pQ.I (5.55)
and the aerodynamic drag is

D=0 (5.56)

Therefore, an additional force must exist in order to balance these two
calculations. This force is called the leading edge suction force F,,, and is a
result of the very high suction forces acting at the leading edge (where q—®
and the local leading edge radius is approaching zero). The strength of this
leading edge suction force is calculated in Section 6.5.2 using the exact solution
near the leading edge of the flat plate (which is similar to the treatment of this
problem by Lighthill>*) and for the small angle of attack case is:

Fos=-pQ.l'a (5.57)

This force cancels the drag component of the thin lifting airfoil obtained by
integrating the pressure difference, so that the two-dimensional drag becomes
zero. This result that the aerodynamic drag in two-dimensional inviscid
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incompressible flow is zero was obtained in 1744 by the French mathgmatician
d’Alembert and hence known as d’Alembert’s Paradox. Exact solutions and
numerical computations of the thick airfoil problem (where the velocity at the
leading edge is finite) will verify this result in the following chapters.

To evaluate the lift of the thin airfoil, the circulation of Eq. (5.54) is

calculated

1"=I y(x)dx=f y(O)Esin 0do
o o 2

* l1+cosd O c .
=20, —+ A, sin (n6 ]—sm 6de
20 ,[) [AO sin @ ,.gl (6) 2

Recalling that

J (1+cos0)dO==rn
0

and that the integral of sin n8 sin @ is nonzero only if n =1,

n/2 when n= 1)

Ismn051n0d9=( 0 when n<+1

0

the circulation becomes

A
r= chn(Ao + 7‘) (5.58)
The lift per unit span is obtained from Eq. (5.55) and is
A
L= incn<A0 + 7‘) (5.59)

This equation indicates that only the first two terms of the circulation .(shgwn
in Fig. 5.10) will have an effect on the lift and the integration over the alrf01‘l qf
the higher-order terms will cancel out. The pitching moment about the y axis is
positive for a clockwise rotation; therefore, a minus sign needs to be included
when calculating the moment M, relative to the airfoil’s leading edge

M"=_I Apxdx=mef y(G)g(l—cos 6)§sin 0do
0 0

2 em
=me[-fr+c—j ¥(8) sin 8 cos Gd()]
2 T4 )y

After some trigonometric manipulations this results in

c ., n
M0=—§L+szw<A0ﬂ+A25) (560)



128 LOW-SPEED AERODYNAMICS

and by substituting the results for the lift:

, ¢ A,
M, = —panZ(A0+A1—7) (5.60a)

The moment M along the x axis can be described in terms of the lift and the
moment at the leading edge as
M=Mo+x ‘Fz*"—M0+x ’L

The center of pressure x,, is defined as the point where the moment is zero
(this can be considered to be the point where the resultant lift force acts):

M=My+x,-L=0
which yields

Xep=—2= (5.61)

Similarly the airfoil section aerodynamic coefficients can be derived:

L A
G = - ( __1)
= o= 2740+ 5 (5.62)
D
Com=—=
Mo JT[ Az]
C, = =—— b
my %inCz ) AO + Al 2 (564)

An observation of the coefficients of the circulation (Egs. (5.51) and
(5.52)) reveals that only the first term A, is a function of angle of attack a.
Substituting A, into the lift coefficient equation yields

1 ”dnc(e) Al
cmn{e- 1[04
1 =2n| o 2 T d(9+2 (5.65)
Also, for a flat plate dn./dx =0 and thus all terms, except 27a, in Eq. (5.65)
will vanish. Therefore, the terms including the effect of the camberline 7, are

independent of angle of attack and are a constant for a particular chordline
shape. This allows us to write the lift coefficient as

C=2n(a~ag) (5.66)
where a,, is called the zero-lift angle and is a function of the camber.
Substituting the value of A, from Eq. (5.52) yields

_ 1 (*dn,
a,= p dx(cosﬂ—l)dﬂ (5.67)
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By using the B, coefficients of Eq. (5.50a) the lift coefficient becomes

B
c,=2n(a—30+7‘) (5.62a)

Comparing with Eq. (5.66) indicates that the zero-lift angle can readily be
obtained as

The lift slope can be defined as
aC
L= =2 (5.68)
da

Equations (5.66-5.68) show that the lift slope of a two-dimensional airfoil is
27z, and that the camber will have an effect similar to an angle of attack
increment Aa, but will not change the lift slope.

Next, the pitching moment coefficient (Eq. (5.64)) can be rewritten,
using the formula for the lift coefficient (Eq. (5.62)), thus

Cru= =S4 (A2 4) (5.69)
4 4

Since the coefficients A;, A, are independent of angle of attack, only the first
term in this equation depends on a. Therefore, if the moments are calculated
relative to the airfoil quarter-chord point the first term in this equation
disappears and the moment at this point becomes independent of angle of
attack. This point is called the aerodynamic center x,. and according to thin
airfoil theory it is located at the quarter chord. Consequently the pitching
moment measured at this point is only due to the second term in Eq. (5.69):

Cp. = ’Z’ (A,— A, (5.70)

The use of this formulation for some simple chord-line shapes is
demonstrated in the following examples.

Example 1: Flat plate. As a first example, consider the thin, lifting model of a
symmetric airfoil that is represented by a flat plate (shown in Fig. 5.12a). For this
particular case there is no camber and 7.(x) = 0. Consequently, all terms having
derivatives of the camberline will vanish, and the circulation coefficients become

Ay=a A =A,=--.-=0 (5.71)
The circulation I' for the flat plate airfoil is then
I'=Q.mca (5.72)

and the lift and moment are obtained by substituting Eq. (5.71) into Egs. (5.59)
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&~

— i . Q"" i »
V c X - \Kl;cﬁx
Q-
(@ ®)
FIGURE 5.12
Free-stream and body coordinate systems for a flat plate at an angle of attack.
and (5.60):
L=pQ.T'=pQ%nca (5.73,
2 i
M,= —inn% e (5.74)
The lift and pitching moment coefficients are
C =2na (5.75)
Cpo=— %’ @ (5.76)
and the lift slope is again 27 as was shown in Eq. (5.66). The center of pressure ig
at
x, -C, 1
== 5.77
(4 C[ 4 ( )

Thus, for the symmetric thin airfoil, the center of pressure and the aerodynamic
center are located at the quarter-chord location.

Because of the transfer of the boundary condition to the z =0 plane, the
airfoil trailing or leading edge can be at a certain small distance from this plane
(as long as n(x) < c). As an example, let’s solve this problem in the free-stream
coordinate system, as shown in Fig. 5.12b. In this case the free-stream angle of
attack is zero, but the chord can be expressed as

M=-a > Mg

Substituting this into Eqgs. (5.51) and (5.52) yields
Ao=a and A|=A2="'=0
which is the same result as in Eq. (5.71). Thus both methods will lead to the same

results.
For the symmetrical airfoil, the pressure coefficient difference AC, can be
found from Eq. (5.44a) by substituting A, and the corresponding circulation
1+cos @

Y
A =2—=4—“ .
G - sing & (5.78)
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Upper surface

Lower surface

(a) (b)

RE 5.13 S
gla(l;c}leated chordwise pressure difference for a symmetric airfoil and calculated upper and lower

surface pressures for a NACA 0009 airfoil.
In terms of x (with Eq. (5.45)) this becomes

AC, =4+ a (5.79)
4 x

The result of this formulation is presented in Fig. 5.13a. In Fig. 5.13b al
comparison is made with the results of a more accurate method glc.g., panee
method) for a NACA 0012 symmetric airfoil. Th}s lpdlcates that t e pres(siur
difference is closely predicted over most of the airfoil. Near the leadm%1 edge,
however, the flat plate solution is singular and the model is not accurate there.

Example 2: Thin airfoil with a parabolic camber. As an example for a _simple
nonsymmetric chordline shape consider the parabolic camberline sl?owp in Fig.
5.14, with € being its maximum height. The equation of the camberline is then

7.(x) =4€§ [1 —E] (5.80)
z‘l
n(x)

—  FIGURE 5.14
x Parabolic arc airfoil.

]
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and the camberline slope is

dn.(x) € x
dr —4;[1—22] (5.81)
Expressing this term by using the transformation x = (c/2)(1 — cos 6) results in

dn.(0)

The coefficients A, can be found by substituting this into Eqs (5.51) and (5.52)
Because of the orthogonal nature of the integral [7 cosn@ cos m6de all terms.
where m # n will vanish. So in this case, when m =1

Ag=a -0

and only the first additional coefficient will be nonzero:

€
Ar=4- A=Ay=--4,=0

This result can be found immediately by comparing Eq. (5.5 i
camberline slope ’ paring 5. (3:30a) with the

dn.(6 s
M= Z B, cos(n0)=4fc056
dx n=0 C

Therefore, 'clearly B, =4€/c and the other B, coefficients are Zero.
.Th.e lift and the moment of the parabolic camber airfoil can be obtained by
substituting these results into Egs. (5.59) and (5.60):

L= innc(a +2 g) (5.83)

c? €
M, = —innZ(af+ 4;) (5.84)

and the corresponding aerodynamic coefficients are

— 6
C,—2n<a/+2;) (5.85)

=_T £
C,,= > <a+4c) (5.86)

:?thl)en comparing this result for the lift with Eq. (5.66) the zero-lift angle is found
o be

€
= —2 —
@, . (5.87)

This means that this airfoil will have zero lift when it is pitched to a negative
angle of attack with a magnitude of 2¢/c.

—4&[1-2¢ €
i _40[1 C2(1—cos€)]=4;cos(9 (5.82)
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The center of pressure is obtained by dividing the moment by the hift

€
a+4-

1
Xep 2 ¢ (5.88)

€
a+2-
c

Note that at & =0 the center of pressure is at the midchord and as the angle of
attack increases it moves toward the quarter chord.

Also, in this case the pitching moment about the aerodynamic center can be
calculated using Eq. (5.70):

-4 €
C'"m:Z(Az_AI):_”E (5.89)

which indicates that the portion of the moment that is independent of the angle of
attack increases with increased curvature (as €/c increases) of the camberline.

Example 3: Flapped airfoil. One of the most frequently used control devices is
the trailing-edge flap. The reason for mounting such a device at the trailing edge
can be observed by examining the (cos 8 — 1) term in Eq. (5.67). This implies
that the zero-lift angle is most influenced by the trailing-edge region where
0 — x; therefore, relatively small deflections of the flap at the trailing edge will
have noticeable effect.

To demonstrate the effect of the trailing-edge flap comsider the following
simple example. Here the main airfoil plane is placed on the x axis, and at a
chordwise position k - ¢ the flap is deflected by &,, as shown in Fig. 5.15. The
trailing edge of the deflected airfoil is now not on the x axis but owing to the
small disturbance approximation of the boundary condition the error due to the
use of this coordinate system is within the accuracy of thin airfoil theory. It is
assumed that the airfoil is continuous, and there is no gap at the flap hinge point.
The slope of the camberline, for the case shown in the figure, is

d
T_9 for 0<x<kc (5.90a)
dx
dn.
Tr=—8 for ke<x<c (5.90b)

FIGURE 5.15

Thin flapped  airfoil
(without a gap at point
k - c).
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Since i i i ‘
the coefficients A, are given as a function of the variable 6, the location of

the hinge point 6, can be found by using Eq. (5.45). )

c
kc=§(1—cos 6.), > cos 6, =2k —1

The coefficients of Egs. (5.51) and (5.52) are computed now only between the -

range 6, — 7, resulting in

1 5 :
A =a+—f &do=a+-I(n-
TR Tt (m=0,) (5.91a) |
2 (" i :
Ar-:_"_" 5, cosn _ 29sinnb, :
7y % os nfdo = (5.916)

By substituting the values of the first i
. vah three A, coefficients into E
(5.64) the lift and pitching moment coefficients are obtained: e (5:62) and

C=2nfave[(1-2) 1 L
. a+ 661 - +nsm 6, (5.92)
Cm=—’—t[a+6(~g'~‘> 29 O
=73 e 1 o s S St A T 5 S 20,,] (5.93)
By setting a = 0 the incremental effect of the flap is obtained:
AC, =[2(x - 6,) + 2sin 0,16, (5.94)
AC,,=—3[(% - 6,) + 2 sin 6, — L sin 26,]6, (5.95)

The increment in the moment at the aerodynamic center, ¢/4, due to the flap ‘

deflection, is obtained using Eq. (5.70) as

AC, . =[isin26, —Lsin 6,16, (5.96)

5.5 THE LUMPED-VORTEX ELEMENT

gsssseigl:r: th: re?ults obtained for the lifting symmetrical airfoil (flat plate), it is
0 develop a simple “lifting element.” The vort istributi ’
a flat plate airfoil can be obtained from Eq. (5.48) as e distribution on such

1+cos @
Y(0)=2Q. 0 ———
(0)=20.a——> (5.97)
Wthtl)l is shown schema}tically in Fig. 5.16a. From a far field point of view, this
can be replaced by a single vortex with the same strength T' = [7 y(x) dx ,
Since the lift of the symmetric airfoil o¥ '

L=pQ.I

acts at the center of pressure (at the
uarter-ch
concentrated vortex is placed there. ! ord for the flat plate), the
b ;f the llﬂlpg flat pla'te‘ is to be represented by only one vortex I, then the
undary condition requiring zero normal flow at the surface can be, specified
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zA A

1+ cosB
sin 8

y(8) =2Q.a

pzj' vae = [ y(@§ sin0do

N
~
=y
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o
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FIGURE 5.16
Vortex distribution on a flat plate at angle of attack and the equivalent “lumped-vortex”

representation (the circulation I is the same for both models).

at only one point too. Assuming that this point is at a distance k - ¢ along the x
axis (Fig. 5.16b) then the boundary condition of zero normal velocity can be

specified as
L i 0.a=0 (5.98)
— wl = .
27 (ke — 3c)
In order for this model to simulate the results of the thin airfoil the
corresponding value of the circulation for a flat plate (Eq. (5.72)) is
substituted:
I'=ncQ.x

thus
—nmcQ.a

27 (ke — %c)

The solution of this equation provides the point at which the boundary
condition needs to be specified, which is called the collocation point:

k=3 (5.99)

+ Q.a=0

Note that this representation is based on results that account for the
Kutta condition at the trailing edge. This is the main reason for some of the
good approximations that can be obtained when using this model. Some of
the advantages of using this lifting element for the estimation of some
aerodynamic effects are shown in the following examples.

Example 1: Tandem airfeils. The useful application of this simple model can be
demonstrated by investigating the lift of the two-airfoil system, shown in Fig.
5.17. The circulations of the two airfoils are represented by I'; and I, and the
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FIGURE 5.17

Lumped-vortex model for tandem airfoils.

two boundary conditions at the two collocation points, which require that the
normal velocity component will be zero, are w; =w, =0. The normal velocity
component at each collocation point consists of the influence of the two vortices
and the free stream normal component and when specified at these points the two
boundary conditions are:

__—0 I, _
gl _2.7'[(C/2) +2.7[C+ Q.a=0 (5100a)
- _rz

= +
"2 2a2c  2m(c/2)

+Q.a=0 (5.100b)
The solution of this system is
I=372cQ.0  T=imcQ.a (5.101)

Thus, clearly, the front airfoil has a larger lift due to the upwash induced by the
second airfoil, and because of the same but reversed interaction the second airfoil
will have less lift. Also, this effect is stronger when the airfoils are closer and the
interaction will disappear as the distance increases. The importance of this result
is that the immediate effects of the tandem airfoil configuration could be
estimated with minimum effort.

Example 2: Ground effect. Another simple example is the airfoil near the
ground, which is modeled by using the mirror-image method (Fig. 5.18). In order
to create a straight streamline at the ground plane, two symmetrically positioned
airfoils are considered. Again, using the lumped vortex element, the normal
velocity component at the collocation point due to the bound vortex is
—I'/27(c/2). The influence of the image vortex, which has the same strength but

in the opposite direction and is located at a distance 2k under the primary vortex,
is then

r .
z—msm(ﬁ—a)

Here r=V4h®+ c*/4 is the distance from the image vortex to the collocation
point, and sin 8 =~ (c/2)/r. Requiring that the sum of the contributions to the
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A Image airfoil

FIGURE 5.18 o
Lumped-vortex model for an airfoil in ground effect.

normal velocity component at the collocation point is zero yields

T + I sin(f—a)+ Q.a=0 (5.102)

2r(c/2) 2nr |

Assuming « is small compared to f (equivalent to assuming that the circulation 1s
linear in a) results in

2 2/4 c?
r =0 =) 2 = 14155 | (5.103)

i i i i d proximity and this result clearly
['(h) is the value of circulation wnth. groun esu
E?iizatés )that the circulation (and lift) will be increased by the proximity of the

ground.

5.6 SUMMARY AND CONCLUSIONS
FROM THIN AIRFOIL THEORY )
i int, i Ive practical problems, the flui
to this point, in order to be able to'so .
(lijr:larcr)lic eqll)lations were considerably mmphﬁe@ and even t.he l%ou?cl?lrsy
C(})Inditions were approximated. However, in spite of these simplifications,
some very important results were obtained in this chapter:

1. The lift slope of a two-dimensional airfoil is 277 as shown l?y 'Eq. (5.66). f
2. The pitching moment at the aerodynamic center (at ¢/4) is independent o
. angle of attack (excluding airfoil’s stalled conditions).

These two very important results are very close to experimental fdatttaa CIE
the low angle of attack range, as shown in Fig. 5.19. When the angle of a
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é S } Experiment (Ref. 11.2)
o0o0J) Re=9x10°

FIGURE 5.19
Lift and pitching moment of a NACA 0009 airfoil.

increases beyond the limits of the small angle of attack assumption, the
streamlines do not follow the airfoil surface shape (Fig. 5.20) and the flow is
considered to be separated. This results in loss of lift, as indicated by the
ex;l)lerimental data in Fig. 5.19 (for a > 10°) and this condition is called airfoil
stall.

3. Airfoil camber does not change the lift slope and can be viewed as an
additional angle of attack effect (a,, in Eq. (5.66)). This is shown
schematically by Fig. 5.21. The symmetric airfoil will have zero lift at « =0
while the airfoil with camber has an “effective” angle of attack that is larger
by ay,.

4. The trailing edge section has a larger effect on the above camber effect.
Therefore, if the airfoil lift needs to be changed without changing its angle

A

— =

Attached flow Separated flow \
FIGURE 5.20

Streamlines of the attached (a) and separated (b) flow over an airfoil.

\
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a, deg. Schematic description of airfoil camber effect

., on the lift coefficient.

of attack, then changing the chordline geometry (e.g., by flaps, or slats) at
the trailing edge region is more effective than at the leading edge region.

5. The effect of thickness on the airfoil lift is not treated in a satisfactory
manner by the small-disturbance approach, but will be calculated more
accurately in the following two chapters.

6. The two-dimensional drag coefficient obtained by this model is zero and
there is no drag associated with the generation of two-dimensional lift.
Experimental airfoil data, however, includes drag due to the viscous
boundary layer on the airfoil, which should be included in engineering
calculations. The experimental drag coefficient values for the NACA 0009
airfoil are also plotted in Fig. 5.19 and for example the “‘zero-lift” drag
coefficient is close to C,; = 0.0055.
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PROBLEMS

5.1. Find the camberline shape that leads to a constant pressure jump along the airfoil
chordline for zero angle of attack.

5.2. Consider the flow of a uniform stream of speed Q.. at angle of attack « past a thin
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5.3.
54.

5.5.

airfoil whose camberline is given by

o2

where h << 1 and A is a constant. Show that

C=2n(a+¢) C,,,0=2(;4 -
where

e=§(4—3l) and u=6—]ZhA

Find the value of A for the zero-lift angle to be zero.
Find the hinge moment for the flapped airfoil of Eq. (5.90).

Consider the flow of a uniform stream of speed Q.. at angle of attack « past a thin
airfoil whose upper surface is given by the parabola in Eq. (5.80) and whose lower
surface is z =0. Find the lift coefficient and moment coefficient about the leading

edge.

Consider the flow of a uniform stream of speed Q. at angle of attack « past a
biplane consisting of two-flat-plate airfoils of chord ¢ a distance k& apart (no
stagger). Find the lift coefficient for each airfoil using a single vortex to represent

each one.

CHAPTER

EXACT
SOLUTIONS
WITH
COMPLEX
VARIABLES

Approximate solutions to the exact potential flow problem are obtained in this
book using both classical small-disturbance methods and numerical modeling.
It is important to have exact solutions available to test the accuracy of the
approximations and to assess their applicability. In this chapter complex
variables will be used to obtain the solution to three model problems: the flat
plate, the circular arc, and a symmetrical airfoil.

6.1 SUMMARY OF COMPLEX
VARIABLE THEORY

Prior to applying complex variable methods to potential flow problems, some
of the principles are discussed briefly (for more details about the mathematics
of complex variables, see Churchill®'). To begin, first define the imaginary unit
i by

i’=-1 6.1)
Then any complex number Y can be written as
Y=a+ib 6.2)

where a and b are real and are called the real and imaginary parts of Y,

141
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z‘r

Y=x+1iz

Imaginary
3

8=argy

> FIGURE 6.1
Real Complex plane.

respgctively. Every complex number therefore can be thought of as repre-
senting an ordered pair of real numbers (a, b) and as such may be represented
gc?ometn"cally by points in a plane. The complex number Y = x + iz is shown in
Fig. ‘6.1 In a cartesian coordinate system with x and z axes. A polar coordinate
version of Y with coordinates r and 8 is also shown in the figure. Note that the

absolute va!ue of Y (]Y]) is defined as Vx?+ z° and the argument of Y
(arg Y = 0) is defined as tan~' z/x. An exponential form of Y is expressed as

Y =re'® (6.3)
if the exponential term is defined as
cos 0 + i sin § = ¢'® (6.9)
The complex conjugate of the complex number Y is defined as
Y=x-iz

Otherwise the algebra of complex numbers is similar to the algebra of the term

(a +b), but. note that i*=—1. As an example, the multiplication of a complex
pumber by its conjugate is

YY = (x +iz)(x —iz) = x + 22

‘A fl}nction f of the complex variable Y can be written in terms of its real
and imaginary parts as

f(Y)=g(x, z) +in(x, z) (6.5)
Analytic functions of a complex variable are differentiable, which means that

af(Y) . f(Y+AY)-f(Y)
ay o am AY

exist.s for all possible paths AY. Now consider the derivative of f(Y) along the
X axis

df(Y)_ I Ag+iAh 3¢ oh
——=1lm -——="24 ;"7
dy Ax—0 Ax ox ox
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Similarly, the derivative in the z direction is

df(Y)_ . Ag+idh_13g oh_dh_ .3

Y T iAz iz oz a8z 'oz

The derivatives must be independent of the direction of differentiation;
therefore, equating the real and imaginary parts of these derivatives results in

og_oh % _ _0h

ox 0z oz 5 (6-:6)

So, differentiability is guaranteed if the real and imaginary parts of f satisfy the
above equations, which are called the Cauchy—Riemann conditions. Also, if a
function of a complex variable is analytic, then the real and imaginary parts
each satisfy Laplace’s equation. Points in a region where f(Y) is analytic are
called regular points and points where f(Y) is not analytic are called singular
points.

Consider the integration of a complex function. If the function is analytic
and the region is simply connected, then the integral

L ’ f(Y)dY

from point A to point B is independent of the path of integration and the
integral around all closed paths is zero. The latter result is called the Cauchy
Integral Theorem. Multiply connected regions are of interest since they include
the region exterior to a two-dimensional airfoil as well as the region remaining
once singular points are excluded by surrounding them with closed curves.
Consider the region in Fig. 6.2 that is exterior to n curves C,, C,, ..., C, and
consider a curve C that surrounds the n curves. An application of the Cauchy
Integral Theorem in this region for a function f that is analytic inside C and
outside the n curves yields the result that the integral around C is equal to the
sum of the integrals around the n curves where all of the internal integrations

are in the same direction:
éf(Y)dY=§ f(Y)ydy + f(Y)dY+---+§ f(yydy 6.7)

Consider the following results for power series expansions of the function
f(Y). If fis analytic at all points within a circle C, with center at Y;, then at
each point Y inside the circle f can be represented by the Taylor series
expansion

(Y

ST Yot (68)

f)=f(Yo) +f (Y)Y -Y) +--

Now consider the region exterior to the circle C; whose center is at Y; in
Fig. 6.3. The function f is analytic in the annular region between C, and C,.
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FIGURE 6.2 FIGURE 6.3 ' )
Integration in a multiply connected region. Region for Laurent series expansion.
Then f can be represented by the Laurent series expansion

f(Y) =2 A(Y - Yo) (6.9)

Consider now the integration of a function with singulari.ties. Let f(Y) be
analytic inside the curve C except at Y. Surround Y, by t_he circle C, (see Fig.
6.4) and represent f between C, and C by the Laurent series of Eq. (6.9). Then
the integral around C becomes

§ f(Y)dy =2, Ansﬂ (Y — Yo)"dY =2miA _, (6.10)
(o) —oo Co

where A _, is the coefficient of the term A_,/(Y — Yp) and is cal}ed the residue
of f(Y) at Y,. If f(Y) is analytic inside C except at a finite number of

singularities (N), then a generalization of Eq. (6.10) leads to the Residue
Theorem:

§ f(Y)dY = 2m§v‘, A_y(Y) (6.11)

—» FIGURE 6.4 -
X Integration of a function with singularities.
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FIGURE 6.5
Mapping with a function of a complex variable.

Complex variable theory is a powerful tool for the solution of two-
dimensional incompressible potential flow problems through its mapping
properties. Consider the function f(Y), that generates the pair of values (g, h)
for each pair of values (x, z). Each value of Y represents a point in the Y plane
and each value of f can be thought of as representing a corresponding point in
the f plane. The function f(Y) therefore geometrically maps or transforms
points (and also curves and regions) from the Y plane to the f plane (see Fig.
6.5).

When the mapping function f(Y) is analytic, the mapping from the Y
plane to the f plane is called conformal and has the following special property.
Consider a curve C through the point Y; in the Y plane and the corresponding
curve D through the corresponding point f, in the f plane (Fig. 6.6). If f is
analytic at Y, and if f'(Yp) #0 then every curve through Y, in the Y plane is
rotated by the amount arg f'(Y,) when it is transformed into the f plane. This is
illustrated in Fig. 6.6, which shows the two curves C, and C, that intersect at
Y, in the Y plane and the corresponding curves D, and D, that intersect at f; in
the f plane. For this conformal mapping, it is Observed that the angle of
intersection between the curves is preserved in the transformation. A point at

| Y plane hA £ plane

D,

FIGURE 6.6
Preservation of the angle between intersecting curves for a conformal transformation.
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which f'(Y) =0 is called a critical point of the mapping and at a critical point
the above intersection angle is not preserved.

6.2 THE COMPLEX POTENTIAL

Consider a steady incompressible, inviscid, irrotational two-dimensional flow.
The velocity potential and the stream function are related by the following
equations (Eq. (2.81)):
o _aw o v
x 9z 3z o«
and both satisfy Laplace’s equation. Note that Eq. (6.12) yields the Cauchy

Riemann conditions for ® and W to be the real and imaginary parts of an
analytic function F of a complex variable. We define the complex potential as

(6.12)

F=0+i¥ (6.13)
and note that its derivative
, dF .
W(Y)=F —dY—u—tw (6.14)

is the complex conjugate of the velocity and is called the complex velocity.
Any analytic function of a complex variable can represent the complex
potential of some flow.

6.3 SIMPLE EXAMPLES

To evaluate the complex potential of two-dimensional flowfields, we shall
apply Eq. (6.13) to the results of some basic flows that were treated in
Chapter 3.

6.3.1 Uniform Stream and Singular Solutions

The complex potential for the flow of a uniform stream of speed Q.. in the x
direction is obtained by substituting the results for the velocity potential and
stream function into Eq. (6.13) to get

F=®+i¥Y=0.(x+iz)=0.Y (6.15)

Now, consider the stream to be at an angle « to the x axis and repeat the
process. The complex potential becomes

F = Qu(x cos a + z sin &) + iQ.(—x sin & + z cos &)
= Q.(cos & —isin a)(x +iz) = Q. Ye™ ™ (6.15a)

This illustrates the general result that the complex potential for one flowfield
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can be made to represent the same flowfield rotated counterclockwise by a if Y
is replaced by Ye ™.

Consider a source of strength o at the origin. Its complex potential can be
obtained similarly and using polar coordinates we get

(¢} g
= — +1i = —
F o (Inr+i6) o InY (6.16)

Note that it is easy to demonstrate that for a source at Y =Y, =x, + iz, the
complex potential is

fod

F=—

2

—In(¥ - Y)) (6.16a)

and in general a flowfield can be translated by Y, by replacing Y by Y — Y, in
the complex potential. The complex potential for a vortex with clockwise
circulationT"at Y=Y, is

iT
F=——In(Y-Y) (6.17)

The complex potential of a doublet at the origin whose axis is in the x
direction is

__#1
=">ry (6.18)

Using the above rules, the complex potential for a doublet at Y =Y, with an
axis at an angle « to the x direction is given by

‘u i

= —me (6.18(1)

6.3.2 Flow in a Corner

A second approach (inverse) is where the flowfield shape is sought for a given
complex potential F. For example, consider the complex potential

F=BY™"

where B is real. The stream function in polar coordinates is
. (7B
W = Br”“sin <—)
a

It can be seen that ¥ =0 at 6 =0 and 6 = &, and therefore this potential
represents flow in a corner as shown in Fig. 6.7. The complex velocity is

W — B _Jz Y(Jt—a)/a
o
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o _»  FIGURE 6.7
77 rrry e Flow in a corner.

and at the corner Y =0, the velocity is zero if @ < and infinite if o> x. If
« =/2, the flow can be considered to be either the flow in a right-angle
corner or flow against a horizontal wall. This flow is called stagnation point

flow and is shown in Fig. 3.6.

6.4 BLASIUS FORMULA,
KUTTA-JOUKOWSKI THEOREM

Consider the flow past a body whose contour is denoted by C (Fig. 6.8). Let
the components of the aerodynamic force acting on the body be X and Z in the
x and z directions, respectively. An integration of the pressure around the
contour and an application of Bernoulli’s equation then leads to the Blasius

formulas (see proof in Glauert,>? pp. 80-81):
x-iz=" f (W) dY (6.19)
C

Let the free-stream velocity be Q..e™'* and let the circulation around C
be T (see Fig. 6.8). Then since the complex velocity is analytic outside of C,
we can write W in a Laurent series about Y = 0 (which is taken inside C)

T A, A A,
W(Y)=Q0.e " +—<+5tmtoat .20
M =0t vy 'y (6.20)

zh
j
FIGURE 6.8 ;
Coordinate system for use wntl’
<17 _ Blasius formula.

"
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Now substitute into the Blasius formula and with the use of the residue
theorem we get

X —iZ=—ipQ.Te "*= pQ, Le "(x2+ (6.21)
or
X +iZ = pQ.Le'™2+ (6.21a)

The force is seen to act perpendicular to the stream Q. and has the
n;lagmtude D=0 and L=pQ.I'. This result is called the Kutta—Joukowski
theorem.

6.5 CONFORMAL MAPPING AND THE
JOUKOWSKI TRANSFORMATION

The' met'ho‘d of solution for our model airfoil problem is to map the airfoil
(which is in the physical plane Y =x+iz) to a circular cylinder in the
f.= g + ih plane through the conformal mapping Y = Y(f). The solution in the
circle Plane has already been obtained (in Section 3.11). Let the complex
potential in the circle plane be F(f) and the complex velocity W(f). Then the
results in the physical plane are

F(Y)=F[f(Y)] (6.22)
_4F_dEdf 1
W) =—= afdy- W(f)m (6.23)

The cc?mplex.velocity in the physical plane is given as a function of the
transformation variable f. The following three model problems are all special
cases of the Joukowski transformation

C2
Y=f+—

f 16f (6.24)
where ‘C will be shown to be the chord for a flat plate, circular arc, and
approximately for a symmetrical foil. ’

Consxder. the r{lapp.ing from the airfoil to the circle shown in Fig. 6.9. The
complex velocity at infinity in both planes is Q..e ~** and the transformation has
Erwo free parameters, t.he radius of the circle a and the center of the circle p.

he complex velocity in the circle plane is obtained with the aid of the results
of the flow over a cylinder from Section 3.11:

. ir 1 - 2 ix

W)= Quert - - 2

2af-u (f—u)

" Since the flirfoil has a sharp trailing edge and the circle has no corners

1e transformation must have a critical point (dY/df =0) at the point in thé

%;de plane corr.e'sponding to the airfoil trailing edge. Denote this point by f,.

e Kutta condition requires the velocity at the airfoil trailing edge to be ﬁnitee

(6.25)
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FIGURE 6.9
Joukowski transformation: mapping of airfoil to circle.

and therefore from Eq. (6.23) it can only be satisfied if
W(f)=0 (6.26)

In the circle plane f, = C/4 and the coordinate system is shown in Fig.
6.9. (Note that f = —~C/4 is also a critical point and must be placed inside the
circle to avoid a velocity singularity in the flowfield. The critical points
f==C/4 transform to Y = +C/2.) From the figure, it is seen that
fe—u=ae™® (6.27)
If this is substituted into Eq. (6.25) for W(f) and the Kutta condition is
applied, we get
. ir . .
Qwe—xa + l_ etﬁ - Qmetaemﬂ — O
2na

—27aQ..ie """ *P + T + 27aQ, ie'*+8) =

and the circulation is

I'=4maQ.sin (a + B) (6.28)
The lift and lift coefficient are then given by
L=pQ.I (6.29)
C=p L = 87 “sin (a + B) (6.29a)
2pQ%c ¢

Let the surface of the circle be given by

f=u+ae’ (6.30)

as shown in Fig. 6.9. The complex velocity on the circle is then obtained by
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substituting Eqs. (6.28) and (6.30) into Eq. (6.25): |
W(f)= Q.e "+ 2iQ.sin (a + B)e™*® — Qe "%~ 4°

=Q.e le™* ™ + Zisin (a + B) — /79

= 2iQ.[sin (a + B) — sin (& — 0)]e~*° (6.31)
and the complex velocity on the airfoil surface is obtained from Eq. (6.23).

W(Y) =——W(LC)2 (6.31a)
e

To find the complex velocity at the airfoil trailing edge, L’Hospital’s Rule must

be applied since both W(f) and dY/df are zero there. At the trailing edge
f=C/4 and 8 =27 — B and the complex velocity is found to be

—2iaQ.sin(a + B) 24°Q.e'"

_g) i GWIA () N u)’
w(¥=3)=lim viap 2c
16/

Using f, — u = ae‘®, we get

. C ..
W(Y = g) = QT';ge‘Zi"[—i sin (@ + B) + > 9] = Q- e*f cos (@ + B)
2 (6.32)

6.5.1 Flat Plate Airfoil

Choose the circle with its center at the origin and a = C/4. Then from Eq.
(6.27),
u=B=0 (6.33)

The circle is given by f = C/4e"® and the corresponding airfoil is Y = C cos 6/2
which is seen to be a flat plate of chord ¢ =C (see Fig. 6.10). Note that

hA z A

=y

[Nl L..J S

FIGURE 6.10
Flat plate airfoil mapping.
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0= 6 = represents the top surface and x < 6 <2 represents the bottom,
The complex velocity on the plate surface is obtained using Eqs. (6.31) and
(6.31a) as

2iQ.[sin @ —sin (@ — B)}e ™  2iQ.[sin & - sin (a — B)]e "
—2i6 -

W =

1—e 2isin e
_ - [sin @ —sin (a - 0)]
=Q. oy (6.34)
and since x = ¢/2 (cos 8) then sin 8 = +V1 — (2x/c)?, and we have
w cosar+sinar1_cose + si 1= 2x/c 6.35
—= ~—————=cos & £ sin .
0. sin 6 h & 1+2x/c (6.35)

where the plus sign refers to the upper surface and the minus sign to the lower.
Note that the trailing edge velocity is Q.. cos a and that the disturbance to the
stream vanishes as the square root of distance from the trailing edge. Also, the
velocity has a square root singularity at the plate’s sharp leading edge.

For small a, Eq. (6.35) becomes

—=l+a——— (6.34a)

Note that with the use of Eqgs. (5.37), (5.48), and (5.71) (and considering the
different definition of 6 in Chapter 5), the solution is identical to the flat plate
solution from thin airfoil theory.

The streamline patterns in the circle and plate planes are shown
schematically in Fig. 6.11. Note that the forward stagnation point in the circle
plane is at 8 = 7 + 2« and therefore the forward stagnation point on the plate
is at x = —¢/2(sin 2a).

(a) (b)

FIGURE 6.11
Schematic description of the streamlines in circle and flat plate airfoil planes.
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The circulation and lift force are given by Egs. (6.28) and (6.29) as
I'=7acQ. sin o (6.36)
L = mapcQ?sin (6.37)
and the lift coefficient is (Eq. (6.29a))

C,=2nsin (6.37a)

6.5.2 Leading-Edge Suction

In the previous section the force on a flat plate airfoil is obtained with the use
of the Kutta—Joukowski Theorem and is seen to be perpendicular to the free
stream direction. An apparent problem arises if we attempt to find the force by
an integration of the pressure distribution. On the surface of the plate the
velocity is given in Eq. (6.35) and with the use of the Bernoulli equation the
pressure difference across the plate is given as

1-2x
Ap =2pQ%sin a cos a4/ o ZX;E (6.38)

The force Z is perpendicular to the plate and is obtained by integrating the
pressure difference along the plate to get

c/2

Z= Ap dx = pcQZ% sin a cos o (6.39)

—c/2

The force obtained by these two different approaches is not the same in either
magnitude or direction.

The difference can be explained by considering the flat plate as the
limiting case of a thin airfoil as its thickness goes to zero. In this limit the
pressure at the leading edge increases while the area upon which it acts
decreases until in the flat plate limit the pressure is infinite and the area is zero.
In this limit there is a finite contribution to the force that must be added to the
result obtained by the pressure integration. To obtain this force we surround
the plate leading edge by a'small circle and calculate the force with the use of
the Blasius formula.

The complex velocity on the plate is given in Eqs. (6.31) and (6.31a).
The velocity on the circle at the leading edge is obtained by using Eq. (6.31)
with =0 and 6 = 7 and is

W(f)=—-4iQ. sin « (6.40)
Near the leading edge f is approximately —c/4 and therefore we can take
W) e
WY)=F—"—-=-0. 6.41
M= 6= 2 9= (6.41)
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If the transformation in Eq. (6.24) is now inverted and Y is set approximately
equal to —c/2, the transformation becomes

[+ VPP =2 = 24 WVeVY T o2 (6.42)

The complex velocity in the leading-ed ion i
ge region is therefore t
Egs. (6.41) and (6.42)) reen to be (from

Q.Vcsin

VY +¢/2 (6.43)

This velocity is now substituted into the Blasius formula (Eq. (6.19)) to get

W(Y)=

) ip ip dy
X—tZ=—fW2dY=— Zc sin? f =- Z sin®
5 > Q a Y+ zpcQs sin® & (6.44)
Thjs leading edge force is seen to act along the plate in the upstream direction
(Fig. 6.12) and is called the leading-edge suction force.

Thg total force is now obtained by the addition of the pressure force and
the suction force (Egs. (6.39) and (6.44)) and the resultant force is seen to be
perpendicular to the stream and exactly equal to the result from the
Kutta—Joukowski theorem (see Fig. 6.12).

A. generalization. of these results can be applied to the solution of the
small-disturbance version of the thin-airfoil problem. Assume that this solution

hgs the following complex velocity in the neighborhood of the airfoil leading
edge,

A
W(Y)=———eaou
(Y) VY o2 (6.45)
i\
X
[
}ot
/ V4
// L
/
/ a
!
|
4_‘——(¥ - ——} »
X-c ‘ C X
2 2
=%
FIGURE 6.12

Forces due to pressure dit.ference and leading edge suction on the flat plate at angle of attack. Note
that the resultant force (lift) is normal to the free stream Q.. .
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where A is a constant. Then the leading-edge suction force in this situation is
given by the Blasius formula as

X = —npA? (6.46)

6.5.3 Flow Normal to a Flat Plate

Another interesting solution that can be obtained by this method is the
solution for the flow normal to a flat plate. The complex potential for this flow
in the circle plane is obtained by adding the potentials of a stream in the z
direction and an opposing doublet (the flow is symmetric about midchord and
has zero circulation) and is given by

2

Fe —iQm[f _ l%f] (6.47)

On the surface of the circle f = (¢/4)e’® and the complex potential becomes
F= —iQ.,[g e —2 e‘“’] = %sin 0=+ Q2°°C Vi— /o (6.48)

The complex potential on the surface is seen to be real and therefore it is equal
to the velocity potential. The jump in potential across the plate is therefore
given by

AP = Q.cV1- (2x/c)? (6.49)

Both an application of the Kutta-Joukowski theorem and a pressure
integration yield the result that there is no force acting on the plate (recall that
this is a potential flow solution without any flow separations!). Based on the
results of the previous section, however, it is expected that symmetrically
placed tip forces may be acting on the tips of the plate and these will be
important in the slender-wing application.

Consider the flow in the neighborhood of the left tip where f is
approximately —c/4. The complex velocity at the corresponding point on the
circle is obtained by a differentiation of the complex potential (Eq. (6.47)) as

W(f) = -2iQ.. (6.50)

The analysis now proceeds in an identical fashion to the analysis in the
previous section since the transformation is the same and the complex velocity
in the neighborhood of the tip is

_Q.Ve 1
W(Y) —T—Y\/—m (6.51)

The tip force is then calculated and is

2
X= —i’—"’:—Q‘” (6.52)
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zﬁ\

1\><

0.
FIGURE 6.13
Suction force at the two tips of a flat plate in a normal flow (the two opposite forces cancel each
other).

The force acts to the left and from symmetry a tip force of equal magnitude
acts on the right tip and points to the right (see Fig. 6.13). .

6.5.4 Circular Arc Airfoil

The center of the circle is chosen on the imaginary axis in the f plane p = im
and from Eq. (6.27) a = C/4sec B and m = a sin B. This results in the circulat
arc airfoil shown in Fig. 6.14a with chord ¢ = C. Note that since the circle
passes through both critical points A and D, the corresponding points on th;
airfoil are sharp. Also, points B[f =i(a +m)] and E[f = —i(a—m)] on the
circle, at the top and bottom, both transform to the same point on the airfoil,
Y =2im. The schematic streamline pattern for the flow in both the physicd
and circle planes is shown in Fig. 6.14b. Note that the forward stagnation poin
on the circle occurs when 6 = 7 + 2« + f and therefore the forward stagnatiof
point on the circular arc can be found from the transformation. The velocity §

the trailing edge is given by Eq. (6.32) as

W(Y = g) = Q.. cos B cos (a + B)e*? (6.5

4

The lift coefficient for the circular arc airfoil is given by Eq. (6.29a) as 4
_2asin(atp) 6.54

cos 3

The zero lift angle is seen to be equal to — B. The maximum camber rati
defined as the ratio of the maximum ordinate 2m to the chord ¢ and is 3 tan

An interesting special case occurs when the circular arc is set at an
of attack of zero. From above, it appears that the forward stagnation point
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(a)

2a + 8 {tan B

(b)

FIGURE 6.14

(a) Circular arc alrfoll mappillg b Schematlc dCSC"pllOll of the streamlines in the circle and the
circular arc airfoil Pla“es (at an a“glc of anaCk) .
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. 2 4 6  FIGURE 6.15
e Streamlines for circular arc at

zero angle of attack.
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Upper surface C,
1k —41.0
- — 4Ty —0.5 \
Yy
C, -
0 0.0
Lower surface C,
+1 1
-2 0 +2 FIGURE 6.16
4x Pressure coefficient for circular arc at
© zero angle of attack.

at the leading edge but since a critical point exists there, L’Hospital’s Rule
must be used again and with f = —c/4 and 6 = & + §, the complex velocity at
the leading edge is

W(Y = —g) = Q.. cos? fe%# (6.55)

This is equal in magnitude to the velocity at the trailing edge and the flow
is seen to be symmetric with respect to the z axis. This is an example of a
lifting flow with no stagnation points (see the streamline pattern in Fig. 6.15)
and with a flow path of equal length for particles traveling along the upper and
lower surfaces. The pressure coefficient is plotted in Fig. 6.16.

6.5.5 Symmetric Joukowski Airfoil
Let the center of the circle be taken on the real axis,

u=-€eCl4 €e>0 (6.56)
so that from Eq. (6.27)

B=0 a=§(l+e) (6.56a)

The circle is transformed into the airfoil shape shown in Fig. 6.17 (note
that € should be small). The surface of the airfoil is given by (Eq. (6.24))
eC C i0 C?
Y———+Z(1+e)e + C

4 e g ie]
16[ 2 +4(1+e)e

=§[—e+(1+e)cos6+i(1+e)sin 0]

{1 : } (6.57)

+ :
[—€+(1+€)cos O +(1+¢€)sin® 0
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FIGURE 6.17

Symmetric Joukowski airfoil mapping.
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Note that Y(—6) =Y and therefore the resulting airfoil is symmetric. The
chordlength c is given by

c=Y(0=0)+|Y(8=n)|=§{(1+2€)[1+0—+1ﬁ]+2}

c 1
=Z{3+2€+(1+2e)} (6.58)

For small €, the chordlength is approximated by
C
sz{3+2€+1—2€+4€2+'"}=C{1+4€2+"'} (6.59)

We can therefore take ¢ = C. The velocity at the cusped trailing edge is given
by Eq. (6.32) as

Q. cos
W =c/2)y=—— .
(Y=c/2) == (6.60)
and the lift coefficient is (when C is the chord) given by Eq. (6.29a) as
C,=2n(l+¢€)sin (6.61)

The thickness ratio is approximately equal to 1.299¢.

6.6 Airfoil With Finite Trailing-Edge Angle

The Joukowski airfoils have cusped trailing edges as has been seen for the flat
plate, circular arc, and symmetric examples. The cusped trailing edge presents
some numerical difficulties for panel-method solutions since in the neighbor-
hood of the trailing edge the airfoil’s upper and lower surfaces coincide.
Therefore, for the purpose of providing exact solutions to test the results of the
panel methods to be presented later, a mapping is introduced here that takes a
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hi
T=n2 -k
a
kJ : ) [ X

FIGURE 6.18
Mapping for airfoil with finite trailing edge angle.

symmetrical airfoil with a finite trailing-edge angle in the Y plane to a circle in
the f plane. The transformation, which appeared in van de Vooren and de
Jong,%? is

__(f-a)
Y= k—1
(f —ae)
The center of the circle is at the origin of coordinates in the f plane and the
radius is @ (see Fig. 6.18). € is a thickness parameter, k controls the

trailing-edge angle, while / determines the chord length.
For the circle f = ae’® and the transformation becomes

_ [a(cos 8 —1) +ia sin 6]*
" [a(cos 6 — €) + ia sin O]*~!

+1 (6.62)

+1 (6.63)

Note that 8 =0 corresponds to Y =/, the trailing edge. For 8 = &, the leading
edge is given by

—a2k

For the chord length to be ¢ =2/, we set Y = —/ above to get
a=2(1+e¢e)k 127k (6.65)
It can be shown that the trailing-edge angle (Fig. 6.18) is given by
T=n2-k) (6.66)

The airfoil with 15 percent thickness is shown in Fig. 6.19.

In Section 6.5 and this section mappings are presented that transform
specific airfoil shapes into circles so that exact solutions to the incompressible
potential flow problem are obtained. Theodorsen®? developed a numerical
conformal mapping procedure to obtain solutions for arbitrary airfoil shapes
and this procedure later became an integral part of more recent techniques. A
review of modern methods for numerical conformal mapping can be found in
Henrici.**
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Van de Vooren Airfoil

0.751 (15 per cent thick)

0.50

0.251-

-0.25

T

-0.50

T

FIGURE 6.19

Finite trailing edge angle airfoil
I 1 1 1 ! ] 1 L I with 15 percent thi kness. (Note
that the x, z coordinates are nor-
malized by /, the - -michord)

-0.75

T

6.7 SUMMARY OF PRESSURE
DISTRIBUTIONS FOR EXACT AIRFOCIL
SOLUTIONS

The exact solutions obtained in this chapter are very useful for the validation
of various numerical methods. Therefore, the method of calculation of the

accurate analytical pressure distribution for several airfoil shapes is briefly
summarized in this section.

Circular Arc Thin Airfoil

For an airfoil of chord ¢ and camber ratio 2m/c = 1 tan 8 the radius of the
circle in the f plane is a (Fig. 6.14a) where

C2
a=+\/m? +% (6.67a)

m=asinf (6.67b)

and

The x, z coordinates of the circular arc airfoil are then obtained from Egs.
(6.24) and (6.30) (where u =im):

C2
_ 6.68
X = a cos 0[1+16az(1+zsin Bsinﬂ+sin23)] (6-68)

C2

~ 16a*(1 + 2 sin 6 sin B + sin? B)

z=a(sin 8 + sin ﬁ)[l ] (6.68b)
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The velocity distribution is then calculated from Egs. (6.30), (6.31), and
(6.31a).

u =20Q.[sin (o + B) —sin (a — )]

2
a*sin (A% + B*) + azlc—6 (B cos 8 — A sin 6)

— (6.69a)
(a A -R) +a’B
w=—20Q.[sin (o + B) — sin (a — 8)]
2
a*cos 8(A*+ B*) — azli6 (B sin 6 + A cos 6)
(6.69b)

2 c*\? 4p2
A———-) +a*B
(“ 16/ 7

where
A =cos® 6 —sin* 6 —sin* B — 2 sin B sin 6
B =2cos 8sin 6 + 2sin B cos 8
The pressure coefficient is then obtained directly from Bernoulli’s equation as
2 + 2
CP = 1 - 2 QZW
Note that for 8 = 0 the equations for the velocity components reduce to the flat
plate case, which is presented in Eq. (6.35).

(6.70)

Symmetric Joukowski Airfoil

For an airfoil of chord ¢ and thickness parameter € the radius of the circle in
the f plane is a (Fig. 6.17) where

C
a=z(l+€) (6.56a)
where the airfoil chord c is
c= ¢ (3 +2€ + ) 6.58
4 1+2e¢ (.' )
The x, z coordinates of the airfoil are given in Eq. (6.57) as
C2

16

x=(acos(9—e—c) 14

2 (6.71a)

C 2
(a cos()—%—) +a’cos’ 0
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CZ

16
z=asinf| 1- (6.71d)

eC\?
<a cos 0 _T> + a?sin’ 0

The velocity distribution is obtained from Egs. (6.30), (6.31), and (6.31a)
(where u = —eC/4):

u=2Q.[sin @ —sin (a — )]

2
<A2 - %)(A sin 8 — B cos 8) + B(A cos 8 + B sin 6)

X (6.72a)
A-=) +B
(4-%)
w = —20Q.[sin a —sin (@ — 9)]
2
(Az—g)(Acos6+Bsin0)—B(AsinB—Bcose)
16
_ (6.72b)
(4-T) +#
A-—) +B
16

where

C2
A=<acos0—%) —a’sin® 0
C
B =2asin 6<acosf)—%>

and the pressure coefficient is calculated by using Eq. (6.70).

The Van de Vooren Airfoil

The parameters for this airfoil are shown in Fig. 6.18 where the chord length is
2/ and is given from Eq. (6.65) as

a2k

A=Tv o

(6.73)

Here € is the thickness parameter and k is the trailing-edge angle parameter
(see Eq. (6.66)) and a is the radius of the circle in the f plane.

The x, z coordinates of the Van de Vooren airfoil are then given in Eq.
(6.63) as

k
x == [cos kB, cos (k — 1), + sin kO sin (k — 1)8;]  (6.74a)
r

k
z =— L [sin k6, cos (k — 1)8, — cos k6, sin (k —1)6,]  (6.74b)
r;
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where

rn=V(acos 6 —a) +a’sin’ 6

r,=V(acos 8 — ea)’ + a’sin’ @

., _, asin@
f,=tan~ ———+ &
acos0—a

asin 0

6,=tan™' +nym

acos 60— ea
Here n, depends on the quadrant where 6, is being evaluated (has a value of 0
in the first quadrant, 1 in the second and third quadrants and 2 in the fourth
quadrant).

The velocity distribution is then given from the solution in the circle
plane plus the transformation (Eq. (6.62)) as

r5 sin & —sin (a — 6)

=20. D, sin 6 + 6.
u=20 FE D2+ D3 (D, sin 6 + D, cos 6) (6.75a)
k- .
r2 sin a —sin (o — ) ,
=-2Q. D, cos § — D 7
o e D2+ D3 (D; cos , sin 6) (6.75b)

where
A =cos (k — 1)6; cos k6, + sin (k — 1)6, sin k8,

B =sin (k —1)6; cos k8, — cos (k — 1)6, sin k6,
Dy=a(1 -k + ke)
D, =A(a cos 6 — Dy) — Ba sin
D, = A(a sin 8) + B(a cos 8 — D)
The pressure distribution is again calculated by using Eq. (6.70).

6.8 METHOD OF IMAGES

Since the solution for the flow past bodies of aerodynamic interest can be
represented by suitable distributions of singular solutions to Laplace’s equa-
tion, it is important to study the representation of these singular solutions in
the presence of additional boundaries, mainly straight, to be able to deal with
ground planes and wind-tunnel walls, etc.

As an example, consider a two-dimensional source of strength o a
distance h from a plane wall as shown in Fig. 6.20. Introduce a cartesian
coordinate system whose origin is at the source and whose x axis is parallel to
the wall. In the absence of the wall, the velocity potential of the source is

®=>"InVaTT 22 (6.76)

Since we would expect that the only singularity in the flow field is due to
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7
v FIGURE 6.20
Image of source in plane wall.

the source, we look for a solution of the form
<I)=§(lln V2T 2+ @, (6.77)
7

where @, satisfies Laplace’s equation, has no singularities for z> —h, decays
at infinity, and exactly cancels the normal component .o'f velpcnty at the wall
due to the source so that the wall boundary condition is satisfied. The

boundary condition on @, is therefore

od, oh 1 (6.78)

From symmetry considerations, an “image”. source at (0, —2h) is
investigated as a possible solution. Its velocity potential is

®,= L InViZ+ (z + 2h) (6.79)
2
and substitution into the boundary condition at the wall shows that it is

satisfied. Similar image solutions for a doublet and a vortex are shqwn in Fig.
6.21. The complex potentials for the original singularities plus their images are

A 2

@

el /
N
\

GD Vortex Doublet

FIGURE 6.21
Image of doublet and vortex in plane wall.
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Source;
g o
F - il .
(V) =50 Y + 5 In (Y +2in) (6.80)
Doublet:
uo u 1 )
F(Y)=-— L iQr-a)
N)=-5ve 2n (Y +2ih) ¢ (6.81)
Vortex:
F)=Ljy_iL :

Next consider a source placed midwa
distance h apart. An image source at (0, h)
on the upper wall but now both the original
be canceled at the lower wall to satisfy

y between two parallel walls a
will satisfy the boundary condition

source stack is

F(r)=2 -
( )—Zr[lnY+ln(Y-zh)+ln(Y+ih)+ln(Y—2ih)+ln(Y+2£h)+---]

(6.83)
Each pair of images can be combined as

ln(Y—inh)+1n(Y+inh)=lnn2h2+1n(1+ Y )
X n

2
th

[
L7 y
] A h
h I NG | _
/ y h x
7 A Ve
- _&
y
{ h

FIGURE 6.22

Image of source midway between
parallel walls.
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and if the constant terms are neglected, the complex potential becomes

o = Y?
F¥) =3Il (1 +W) (6.84)

The use of the following identity from Gradshteyn and Ryzhik (Ref. 6.5, p.
37),

a0 A2
sinhA=A]] (1 +—2—2> (6.85)
k=1 km

leads to the closed-form solution for the complex pctential as

Y
F(Y) = % In sinh ’—’h— (6.86)

For a clockwise vortex of circulation T between parallel walls, an
application of the iterative image procedure previously used for the source
leads to the solution shown in Fig. 6.23, which consists of a stack of clockwise

vortices at Y =0, +2h, +4h, ... and a stack of counterclockwise vortices.at
+h, +3h, £5h,.... From before, the complex potential for the clockwise
stack is
r Y
=— Insinh— 6.87
F(Y) annsmh h (6.87)

The use of another identity from Gradshteyn and Ryzhik,

hA—f[(1+—4AZ——) (6.88)
cosna= U T ok I '

@@ 1
h
\
D1
A h
’ Qs v -
AN A X
| h

Ty Y FIGURE 6.23
C’ Image of clockwise vortex midway be-
tween parallel walls.
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results in the following complex potential for the vortex between walls:

ir Y Y] il Y
= inh——1 h—] =—Intanh — 6.
F(Y) o [ln sinh o ~Imcosh = 2, M tanh— (6.89)

We have considered images of the singular solutions in a plane wall (for
ground-effect applications) and between parallel walls (for wind-tunnel ap-
plications). Another possible application is the interaction of an airfoil with its
wake or the wake of another airfoil (for unsteady motion) and since we have
shown that an airfoil geometry can be transformed through conformal mapping
into a circle, the image system for a singular solution in the presence of a circle
will be studied.

The circle theorem due to Milne-Thomson®*® states that if the complex
potential F,(Y) represents a flow without singularities for |Y| <a, then

F(Y)=F(Y)+ E(”—;) (6.90)

represents the same flow at infinity with a circular cylinder of radius a at the
origin. The function F(Y) is defined in the following way. “If F(x) is a
function that takes complex values for real values of x, E(x) is the function
that takes the corresponding conjugate complex values for the same real values
of x, and F(Y) is obtained by writing Y instead of x.”

Consider the simple example where F(Y) = UY, a uniform stream in the
x direction. £(Y) is seen to be also UY and therefore the flow of the uniform
stream with a circle at the origin is given as

2
F(Y)=UY + U"7 (6.91)

which is simply the stream plus doublet solution previously derived. Now let

[0

B =3

In(Y - Yy) (6.92)

which is the complex potential for a source of strength o at Y = Y,. F(Y) is

g

E(Y)=5-

In(Y - Y,) (6.93)

and the complex potential for a source outside a circular cylinder becomes
(Eq. (6.90))

F(Y)=2= [ln(Y— Yy) +In <“—;— Yo)] (6.94)

The following manipulation will put the above result in the form of a
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recognizable image system:

F(Y) =5‘:—r [m (Y - Yy) +1n (a—;— Yo)]

=§t [m(yw YO)+1n3;9+1n (Y—;l,-—Z)(—l)]

2
a
=2 In(Y-Y)]-InY +ln (Y—T) (6.95)
27 Y,
where the constant terms have been neglected. It can be seen that the solution
consists of the original source, an image source of the same strength at the
image point, and a sink of the same strength at the origin. These three
singularities line up along the same radial line from the origin, as can be seen
by writing the location of the image point as
A ( a® )
—_— = — 0
Yo YoYo \[Yof
For a clockwise vortex of circulation I' at Y=Y, outsidg a circlg, the
image system consists of a counterclockwise image at the same image point as
for the source and a clockwise vortex at the origin. Both of these image
systems are illustrated in Fig. 6.24.

A
Yo
g\ x
\ a?/ yu
ZA
y(i
/f i
\-/ X
FIGURE 6.24 .
alY, Image of source and vortex outside a
circle.
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As a final example, take
‘u eia
K(Y)=—-—
=35 (6.96)
which is the complex potential for a doublet of strength u at Y = Y, whose axis
is at an angle « to the x direction. With the use of the result that

A i
B B
then .
H e—ld
E(Y
(== v (6.97)
and the complex potential for the doublet outside of a circle becomes
'u eia e—ia
e

The following manipulation will put the result in the form of a
recognizable image system:

F(Y)_zi[y .t m(Y );/270}’()]

26:[}' Y0 m(ffo( —az/Yo)"LYZ)):0 az//)g)]

=i[ e’a _e—iaf : 1 ]
Y -Y, Y(Y ~a/ %)
u [ e a? .
= + _ i(m—a+2arg Yp)
22 Y=Y %P (Y - a¥/¥) ¢ ] (6.98a)

where the constant term has been neglected. The image of the doublet in a
circle is therefore seen to be another doublet inside the circle at the image

<A

¥y

a’ly,

FIGURE 6.25
Image of radial doublet outside a circle.
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point previously derived for the source but with a reduced strength

pa’
[Yol?

For the special case of a doublet pointing outward along the radial line
from the origin, arg ¥, = «, and the complex potential becomes

eia a2 ei(rH—a)
F ——_] 6.99
(n= [Y Yo |Y3Y-a*/Y, (6.9

This doublet plus its image are shown in Fig. 6.25.
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PROBLEMS

6.1. Consider the flow due to a doublet of strength u at (a, 0) whose axis is in the x
direction and an equal doublet at (—a, 0) whose axis lies in the opposite direction.
Find the complex potential for the limiting case a—0, ua— M. Sketch some
streamlines.

6.2. Consider the flow of a uniform stream of speed Q.. in the x direction past two
sources of strength o at (0,a) and (0, —a). (@) Find the stagnation point(s) and
discuss the significance of 0/27xQ.a. (b) Sketch some streamlines (including the
stagnation streamline) for the cases: a—0, a—», 0/27xQ.a <1, and 0/27Q.a >
1.

6.3. Consider the flow of a uniform stream of speed Q.. at an angle of attack « past an
ellipse of semiaxes a and b
(a) Show that the transformation

a’—b?
af

maps the ellipse into a circle of radius (a + b)/2 in the f plane.

(b) Sketch the streamlines of the flow. What are the values of 6 for the stagnation
points in the circle plane? Use these values plus the results in (a) to find the
stagnation points on the ellipse.

(c) Plot the pressure distribution on the ellipse for a =1, b =0.25, and a = 30°.

Y=f+




172 LOW-SPEED AERODYNAMICS

6.4. Consider the flow around a flat plate that lies along the x axis from —c/2 <x <c¢/2
due to the presence of a clockwise vortex of circulation I' one chordlength
downstream of the trailing edge. Find the complex potential and sketch some
streamlines.

6.5. Cpnsider the flow due to a source of strength o between two parallel walls a
distance h apart. The source is situated a distance ah from the bottom wall. Find
the complex potential.

6.6. Cor}sider'the flow of a uniform stream of speed Q. past a circular cylinder of
radius a in the presence of a ground plane a distance h from the center of the

circle. For a/h <« 1, use the method of images to find the complex potential (find
the first few terms in the solution).

CHAPTER

PERTURBATION
METHODS

For the small-disturbance solution techniques that are treated in this book,
approximations to the exact mathematical problem formulation are made to
facilitate the determination of a solution. Since for incompressible and
irrotational flow the governing partial differential equation is linear, the
approximations are made to the body boundary condition. For example, for
the three-dimensional wing in Chapter 4, only terms linear in thickness,
camber, and angle of attack are kept and the boundary condition is transferred
to the x—y plane. The solution technique is therefore a “first-order” thin-wing
theory.

The small-disturbance methods developed here can be thought of as
providing the first term in a perturbation series expansion of the solution to the
exact mathematical problem and terms that were neglected in determining the
first term will come into play in the solution for the following terms. In this
book we will follow the lead of Van Dyke’? and use the thin-airfoil problem as
the vehicle for the presentation of the ideas and some of the details of
perturbation methods and their applicability to aerodynamics. First, the
thin-airfoil solution will be introduced as the first term in a small-disturbance
expansion and the mathematical problem for the next term will be derived. An
example of a second-order solution will be presented and the failure of the
expansion in the leading-edge region will be noted. A local solution applicable
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in the leading-edge region will be obtained and the method of matched
asymptotic expansions will be used to provide a solution valid for the complete
airfoil. Finally, the thin airfoil in ground effect will be studied to illustrate an
expansion within an expansion.

7.1 THIN-AIRFOIL PROBLEM

Consider the two-dimensional airfoil problem as a special case of the
three-dimensional wing problem of Chapter 4. The dependent variables are
now functions of x and z and both the upper and lower airfoil surfaces are
given by

fr,2)=z~n(x)=0 —g

=x=

(7.1)

[\ N oY

Note that the origin is at midchord and that the airfoil chord is ¢ (Fig. 7.1).

This choice of the origin is made for convenience in the evaluation of the

Cauchy principal value integrals that will appear in the example problems.
The perturbation velocity potential ® is defined in Section 4.2 by

P =0+ P, (7.2)
where
O, = Uox + Wz =xQ.. cos a + zQ.. sin a (7.3)

The exact airfoil boundary condition is the two-dimensional version of Eq.
(4.12):
dn (20 .

i ax+chosa>+§+Qmsma'=O onz=y (7.49)
with l./(,c = Q"" cos & and W, = Q. sin a. The small-disturbance approximations
and limitations on the geometry introduced in Chapter 4 apply and it is
assymed that the order of magnitude of the airfoil thickness ratio, camber
ratio, and angle of attack can all be represented by the small parameter e.

Let us consider the following expansion for the perturbation velocity
potential,
¢=¢1+¢2+¢3+"' (7.5)

zlr

FIGURE 7.1
Coordinate system for airfoil problem.
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where '
®,=0(¢) i=1,23,... (7.6)

and the order symbol O(e) is defined by

g(e) = 0(e) as €e—0 if lim g_(e_)< = 7.7
e—0 €
In this chapter we will carry the analysis through to second order to
illustrate the method. Terms to O(e?) will be kept and therefore the
components of the free stream flow are written as

Uw=Q,,cosar=Qm[1—§+ O(o/‘)] (7.8a)

W, = Q.sin a = Q.[a + O(a?)] (7.8b)

The boundary condition will be transferred to the chord line as in Eq. (4.16)
and the complete boundary condition with the above substitutions becomes

7o+ 2 0] 30,
I Q.+ ™ (x,01) |+ Q.a+ 32 (x, 01)

*® od

+ ngzl(x, 0+) +a—zz(x, 0+)=0 (7.9)
where the * refers to the upper and lower surfaces. For this equation to be
valid for all values of the perturbation parameter €, the terms of the same
order (€, €?) must individually be zero. To show this, divide the equation by €
and take the limit as € goes to zero. Then all of the terms of O(¢) must be
zero. Now, subtract these terms from the original equation and repeat the
process. This shows that all of the terms of O(e?) must be zero.

The boundary conditions for the first- and second-order problems then

become

oP, dn
: —(x01)=Q0.—~ 0. 7.10
Oy Tx04)=0.7'- 0.0 (7.10)
P dn 3% 7P
2 2 1 1
: — (x, 0x)=——(x, 01) — , 0+ 7.11
O(€):  T2x01)=T12 0w 0) -5, 05)  (111)
If Laplace’s equation for @, is used in the second-order condition, it becomes
9P, d [ 8o, ]
— =— , 0% 1
(6, 05) = = | 1= (x, 08) (7.12)

At this point it is noted that the first-order boundary condition is the one that
was used in the thin-airfoil treatment in Chapter 5. Now let us separate the
problems at each order into a nonlifting (symmetric or thickness) problem and
a lifting (camber and angle of attack) problem and introduce the camber and
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thickness functions

n=n.tn, (7 13(1)
(Dl =¢1L+¢1T (7'13b)
q)z = ¢2L + q)ZT (7. 13C)

Note that the lifting potentials (P, ®2;) are antisymmetric in z and the
nonlifting potentials (&, ®,r) are symmetric in z. Consequently, the 3
component of velocity w is continuous across the chord for the lifting problems
and discontinuous for the nonlifting problems.

With the above definitions, Eqgs. (7.10-7.12) become

0P, _ o dn,
a2 (x, 0+)=0. . Q.a (7. 14a)
9P, _ dn,
5z & 0H)=%0.— (7.14b)
a(DZL d [ a¢17~ a¢1L ]
= + 7, , U+ i
9z (x, Oi) dx Ne ox (x, Oi) n, o (x 0 ) (7 15)
ad 30,

T d[ 3
3z (x, 02) = idx[n' ox

The complete mathematical problems that accompany the above bound-
ary conditions (Eqs. (7.14a,b), (7.15) and (7.16)) include Laplace’s equation
for each velocity potential and a velocity field that decays to zero at infinity. A
Kutta condition must be applied in the lifting problems and the nonlifting
problems have zero circulation.

The solutions to the above mathematical problems can be obtained with
the use of the theory of singular integral equations (see Newman,”"! Section
5.7). The first-order tangential velocity component is

[}
L (x, 0£) + 7,
29

3 @ 00| (.16

oD, Q. (? dn, dx,
= 01) === - .
Uyr Ew (x, 01) x )., dx (xO)x T rs (7.17)
for the thickness problem and
cf2 n CZ
anL Qw 1 [ c(xO)_ a’] __X(Z)
= y 04) == 0 4
e ox (x ) T 2 ) dx dx,+ r
——Xx —c/2 X =Xy 2
4
(7.18)

for the lifting problem. A source distribution for @7 also leads to Eq. (7.17)
(see Eq. 5.15). A vortex distribution solution for @, leads to an integral
equation for y (Eq. 5.39) and the solution to this integral equation is given in
Eq. (7.18) where y =2u,, .
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The nonunique solution (of Eq. (5.39)) with arbitrary girculat.ion is ‘given
because for another application the solution with zero c1rcu1at10n' will be
needed. If the Kutta condition is applied, then u,;(c/2) =0, and using (Eq.

(7.18)) we get

c/2 d .
r=-2 _dz[d’; (x0) - a/]—c
c/2 d .
B _2 —c/ZI:d-Z (XO)_ Cy]

Substituting this value of the circulation into Eq. (7.18) yields

C 2 1 1
NI N S
ulL:? cld—x"J_cp dx(xO) ¢ 4 xo x—x9 ¢/2—xg

" 1 cl2 dnc _Cf_ 2 C/2_x dx
=%—VC2/4—x2 ,L,z [E(x())_a] Ng %0 (x —xo)(c/2—x0) °

—x (<2 [dn. c/2+xy dxg
- £ VC/Z xf [ - (x")_“] /2 —Xox —x
T c/l2+x)_.nldx c Xo 0

and finally the lifting solution becomes

<2 d dx
uir=0 dz_"{ﬁlf clatxodne, ) do } (7.19)
2> Ne/2+x x)_.n Vc/2—x, dx X~ X
The x component of velocity on the airfoil is then given by u = Q.+ u;7 T uy,

and the z component is obtained from the boundary conditions (Eq.
(7.14a,b)).

7.2 SECOND-ORDER SOLUTION
Consider the second-order solution. Define fictitious thickness and camber
functions as

ur Uy 920
ncz_nci‘*'h@ (7.20a)
hr o AL (7.200)

This puts the second-order problem in the same form as the first-order one at
zero angle of attack (see boundary conditions in Egs. (7.14)—(7.16)) and the
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solution can be written as

Quo cf2 d
Upr = T . (Z:Z (x0) X (7.21)

_ Q. /c/2—xr’2 [e/2+ xodn,, dx,
Y =" c/2+xJt_p Vef2—xy dx (xO)x—xO (7.22)

The x component of velocity on the airfoil surface is then given as

dx,
— X

-0
u=Qm_Q2 +u1T+u2Tiu1Liu2L (7.23)
and the z component is obtained from the boundary conditions (Egs. (7.15)

and (7.16)).
The surface speed on the airfoil is the magnitude of the velocity and to
obtain its value at any order the velocity components at that order are

substituted into
q=Vui+w? (7.24)

the expansion for the square root

2

(1+x)1/2=1+§__x_8_+... forx<1 (724(1)

is used, the results are evaluated in terms of values on the chordline, and only
terms up to the desired order are kept. The expressions for the surface speed
correct to first and second order are derived as follows. On the surface, to
second order,

a®\ 9P, 8P, ad, 9,7
=24 wr= QL1 =)+ = —2]+[ - +—‘+—2]
g [Q<1 2) ox  ox Q-a 9z oz
If the results are evaluated at z =0 and terms up to second order are kept,
3=02%2+2Q.(uir Ly +uyr tuy ) +2Q 9 3%,
9= Q% o U1T 1L 2T 2L 1] 3z ox
P oP 2
2 1 1
PELTRPVON TP
+(Ur T uy ) +2Q.a 32 (x ) 5z (x )
Note that
7, 3 od, 3, "
ax oz (x’ O:t)_a_xg(x’ Oi)_Qm ox (77 a)_an
Then,
‘I_%_ (uir ulL)2

2
02" 1+Q_(u1riu1L+uzriu2L)+
+2a(n' —a) + 200"+ (n' — @)’

oz

2 ur tuy)?
=1+Q—(u1T:tu1L+u2T:tu2L)+(lTQ—21L)—a'2+(7]')2+21]n"
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With the use of Eq. (7.24a) we get

-g—i=1+%[é(ulrium+u27:tuu)
+(u";2u“)2—af2+(71')2+27l77"]—égz(ulrium)z
Therefore, ’ )
&=1+“Q—fi‘é—t (7.25a)
—gi=1+5fi3%+EQZ—:iZ—Z:+(ncifh)(n’c’ini%%(né:tn,’)z—%z (7.25b)

The surface pressure coefficient (correct to second order) is obtained from
Bernoulli’s equation as follows:

2
q:
C,=1-—=
f4 ch
Compare the expression for g5/QZ2 above to the expression for ¢,/Q.. in Eq.
(7.25b) to observe that

‘I_%=1+2<2_1>+(u1riu11)2

QZ 0. QZ
and therefore
q» uyr | U\’
C =—2<——1>—<——i——> 7.26
P 0. 0. 0. ( )

The airfoil lift coefficient can then be determined from

¢ =1 f ” [C,(x, 0=) — C,(x, 0+)] dx (7.27)

—c/2

and with the use of Eqs. (7.25b) and (7.26) is

4 [ fuy  Uyguy U .,

=t (Gt et el i) e (1.28)
To illustrate the results of second-order thin-airfoil theory, consider a

symmetric airfoil at angle of attack and the surface speed is to be calculated.

The following thickness function represents a symmetric Joukowski airfoil to

second order in thickness ratio (see Van Dyke,’ p. 54):

cT, 4x? ( Zx)
=D - (-2 .
"= c? c (7.29)

where 11=4‘t/3\/§ and 7 is the thickness ratio. To evaluate the Cauchy
principal value integrals appearing in the equations for the x component of
velocity at various orders, it will be advantageous to use Appendix A, which is

—c/2



180 Low-sPEED AERODYNAMICS

reproduced from Ref. 7.2. Therefore, lengths must be scaled by half the chord
lengt!l to obtain the limits of integration from —1 to +1. Introduce the
nondimensional coordinate & =x/(c/2). The nondimensional thickness func-
tion for the Joukowski airfoil becomes

Fo Mo

r-h_c/Z_tl(l X)Vi—-x (7.30)
The nondimensional versions of Egs. (7.17) and (7.19) for this symmetric
airfoil become

wr_1 10 dn, | di
Qw xl, df (XQ)i —)20 (7.31a)
ulL _ 1 - i
0. “\1+z (7.31b)
The slope of the nondimensional thickness function is
dij, P e
Frin 7(1 - 2%)7"(—1 - % + 2¢?) (7.32)
and the first-order x component of velocity becomes
2 o141 -28) £ ey
Q.. ! 1+ (7.33)

The nondimensional thickness and camber functions at second order

(Egs. (7.20a,b)) are then

i, = 11V1 — % (1 ~ 3% + 2¢?) (7.34a)
flez = Tya(1 — %)? (7.34b)
and their nondimensional derivatives are
dn, 31 _
E_z=ﬁ1x_2(—l+x+2§¢2—2j3) (74350)
dﬁcZ — —
Fra —271,a(1 — %) (7.35b)

The §econd-order result for the x component of velocity is obtained from the
nondimensional version of Egs. (7.21), (7.22), and (7.23) and is

i=1—ﬁz+r(1—2f)ia\/1_i—6r2'\/ﬁ¢2 £/
. 2 ! 1+x Ny Tenery o (7:36)

The second-order result for the surface speed from Eq. (7.25b) is obtained
with some manipulation as

1-x 1,1

q: _ —x —:

L 141 -28)ta Pt £)2 ¢ T

0. W ) 113 21'11+f(1+2.xc) F27,a% e
(7.37)
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& Second-order outer
— — — First-order outer
Exact

49
Q.
1.0+
10 percent thick, symmetric
Joukowski airfoil
\Y
0.9 L 1 J
Z0s ~0.25 0.25 0.5 FIGURE 7.2

Surface speed results for 10 per-
cent thick symmetric Joukowski
airfoil.

’\|>< (=] o

The first- and second-order surface speeds for a 10 percent thick Joukowski
airfoil are shown in Fig. 7.2 and compared with the exact result from Chapter 6
for the case with zero angle of attack. It is noted that the first-order thickness
solution is not singular at the leading edge but that the leading-edge stagnation
point and the acceleration region following it are not predicted by the theory.
This is not surprising since the approximations of the theory are invalid in the
neighborhood of a stagnation point and round edge. The deceleration region
over the rear of the airfoil appears to be predicted well by the theory. The
second-order surface speed improves the comparison with the exact results
over most of the foil (including the maximum speed) but is now singular at the
leading edge. If we were to continue to higher order, the solution would
become more and more singular at the leading edge and the thin-airfoil theory
is not able to predict the correct behavior in this region.
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7.3 LEADING-EDGE SOLUTION

The second-order solution of Eq. (7.37) shows that the perturbation expansion
for the thin airfoil breaks down in the neighborhood of the round leading edge
in a region whose extent is measured by the leading-edge or nose radius of the
airfoil r (r is the radius of curvature at the leading edge). Also, r is O(€?). To
illustrate the correct local solution in the neighborhood of the leading edge, let
us consider a symmetric airfoil at zero angle of attack. Introduce the
coordinate s =x + ¢/2, which is measured from the leading edge (Fig. 7.3).
Many symmetric low-speed airfoil sections are analytic in the leading-edge
region and their surfaces can be described by

z=2Ts"+ ;s> +--- (7.38) .

where T, T;, . . . are constants.
For small values of s [or for s = O(€?)], the surface is given by the first
term

z=%VT3 (7.39)

which is seen to be identical to the equation of a semi-infinite parabola, which
can also be given by

z=%V2rs (7.40)

The local solution then is the symmetric flow past this parabola whose
geometry is shown in Fig. 7.3 and since this solution is not valid in the far field,
let us for the moment denote the stream speed as V. The method of conformal
mapping will be used to obtain the surface speed on the parabola. Consider the

mapping
Y=—f=n*-E-2i&y (7.41)

where Y =x +iz and f = § + i7. Then it can be seen that the curve § =&, in
the f plane maps into the parabola

z=+VAE(x + £)) (7.42)

A

“ ¥

FIGURE 7.3
Symmetric flow past semi-
infinite parabola.
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zA
Y plane n Fplane
2l 777777
v L . .l .
sé‘(<< x % ;
€=Eo

FIGURE 7.4
Mapping from parabola flowfield to stagnation flowfield.

in the Y plane and the corresponding flowfields in the two planes are shown in
Fig. 7.4.

The flow in the f plane is seen to be stagnation point flow against the wall
& = &, and its complex potential is

F=-V(f- &) (7.43)

The constant V has been chosen to provide the correct far field solution in the
parabola or physical plane. On the surface we have f =in, £=§&,, and the
complex velocity becomes

dF/df _-2V(f—&)__ Vin
dy/df  =2f  (Eo+in)

Now, n=Vx + &3 and if we introduce s =x + &2, the surface speed on the

parabola is
q [ s
v= Vi3 = (7.45)

Note that the surface speed at any point is just the projection of the
free-stream speed onto the tangent.

Since the nose radius of the parabola is r=2& (Eq. (7.42) yields
z=+V4Ess ), the desired local surface speed for the airfoil becomes

a_.] s
|4 s+r/2 (7.46)

The corresponding local solution for the airfoil problem with camber and angle
of attack is given in Van Dyke.”? We therefore have available two incomplete
solutions to the problem we set out to solve at the beginning of the chapter.
The thin-airfoil solution has been obtained correct to second order but it is not
correct in the neighborhood of the leading edge. The local solution is exact in

W(Y)= (7.44)
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the neighborhood of the leading edge but does not describe the flow in the far
field and it also contains an undetermined constant.

74 MATCHED ASYMPTOTIC
EXPANSIONS

We will use the method of matched asymptotic expansions to obtain a solution
that is uniformly valid over the airfoil surface. Our results will be presented
essentially in outline form and further details are available in Van Dyke.> The
success of the method is predicated on the observation that the two solutions
complement each other and it is expected that in the limits of their
applicability they approach each other (the limit of the thin-airfoil solution as
the leading edge is approached should somehow be equivalent to the limit of
the local solution as the distance from the leading edge is increased). The local
solution is called the inner solution and the thin-airfoil solution is called the
outer solution.

The formal task of matching the inner and outer solutions is achieved
through the asymptotic matching principle (Van Dyke,> p. 90):

The m-term inner expansion of the n-term outer expansion = the n-term outer
expansion of the m-term inner expansion

Outer variables are scaled with the airfoil chord and inner variables are
scaled with the nose radius; m and n are integers, not necessarily equal. The
definition of the m-term inner expansion of the n-term outer expansion is
expressed in the following sequence of steps:

1. Re-write the n-term outer expansion in inner variables.
2. Expand in an asymptotic series for small € (or 7).
3. Keep m terms.
We will apply the above matching technique to the surface speed for the

flow past a symmetric Joukowski airfoil at zero angle of attack. The three-term
(n = 3) outer expansion in dimensionless coordinates is given in Eq. (7.37) as
q 21—

oo =1+ ml-20) — 2t (1 +28) (7.47)

In terms of § =2s/c =% + 1, Eq. (7.47) becomes

q= Qm[1+1:1(3 2s)———(2s—-1)2] (1.47a)

To second order in the thickness 7, the airfoil can be represented locally by the
parabola so that the two-term (m = 2) inner expansion is given in Eq. (7.46) as

1= s _ §
| %4 \/s+r/2 \/§+r/c (7.48)
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The Joukowski airfoil (Eq. (7.30)) becomes
Z=11,2-5)V2% — 52 (7.49)

and as §— 0 we get the parabola Z = +V8735. From Eq. (7.40), the parabola is
Z = £V43r/c. The nose radius is therefore r = 2c73.
Let us now do the matching for q.

Two term inner expansion (already in outer variables):

V i T% \/T‘L’l (7.50a)

expanded for small 7,

V(l - ?) + O(1}) (7.50b)
Three-term outer expansion:
V(l - ?) (7.50¢)
Three-term outer expansion:
Qw[1+ 7,(3~ Zs)———(Zs 1)2] (7.51a)

rewritten in inner variables (note that § =§/73)

o 12-vS .
Qw[1+t1(3—2ﬁ'5)—5 A (2r§s—1)2} (7.51b)

expanded for small T,
1
Qm[l +37,— E] + O(13) (7.51c¢)

Two-term inner expansion:

Qw[ - 1.+ 31:1] Qw[l + 31, —?] (7.51d)

The matching is complete when we equate the results for ¢ from Egs.
(7.50c) and (7.51d) to get V = Q.(1+37,). The local solution therefore
experiences a free-stream speed that is larger than the actual one.

The final step in the analysis is to combine the inner and outer solutions
to obtain a solution valid over the complete airfoil surface. At best the solution
will be as accurate as either the inner or outer expansions in their regions of
applicability. The combined solution is called a composite expansion (Van
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Dyke,*? pp. 94-97) and we will use the additive composite

fom =+ fO - m=2,n=3 (7.52)
The additive composite expansion is the sum of the inner and outer expansions
minus the part they have in common (i refers to inner and o refers to outer).
This common part, the last term in Eq. (7.52), is obtained during the matching
process and is given in Eq. (7.50c). Our resuit is

T
i=(1+3‘t1) +22+1+11(3 23)———-—(2s 1)? —[1+311—?]
(7.53)
After some manipulations this result becomes
s
Q— =(1+4+37)\/= P -21,§ + O (2s 3)? (7.53q)

The important feature to note in the solutlon is that the singular part of
the thin-airfoil result in the neighborhood of the leading edge has been
removed. (Figure 7.5 compares the inner, outer and composite expansions for
a particular value of the thickness.)

/

1.2 f—~ 2-term inner
2-term outer

0.8t
9
0.

0.6 13% thick, symmetric

Joukowski airfoil
047
0.2F
FIGURE 7.5
_00 5 _0125 0125 0"5 Inner, outer, and composite ex-

pansions for the 13 percent thick
symmetric Joukowski airfoil.

Sl ofF
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7.5 THIN AIRFOIL IN GROUND EFFECT

The thin airfoil in ground effect problem will be studied as an example of a
perturbation expansion for a case with two small parameters, the standard
thin-airfoil parameter (thickness, camber, or angle of attack) and the chord to
wall clearance ratio. A thin airfoil is placed in a stream along the x axis (see
Fig. 7.6) in the presence of a ground plane located & semichords from the
airfoil’s midchord. We will consider a solution linear in thickness, camber, and
angle of attack (first-order thin-airfoil theory) for 4 > 1. It is convenient to use
dimensionless variables with lengths scaled by the semichord, speeds by the
free stream speed, and the velocity potential by the product of the two. For
simplicity, we will drop the bars on the dimensionless variables.

The airfoil boundary condition is transferred to the strip on the x axis
with —1=<x=1 and the mathematical problem for the perturbation velocity
potential becomes

Ve =0 (7.54)
oP dn.  dn, _
0t)=—- —1=x= .
5, & 0%) ot l=x=1 (7.55)
oD
—(x, —h) = )
3, & =0 (7.56)

Equation (7.55) is the airfoil boundary condition from Egs. (7.10) and (7.13a)
and Eq. (7.56) is the ground plane boundary condition. A Kutta condition
must be applied at the airfoil trailing edge to complete the problem
specification.

The solution is modeled by a distribution of sources of strength o(x) per
unit length and vortices of circulation y(x) per unit length along the strip
—1=x=1, z=0and corresponding image distributions are placed on the strip
—l1=x=1, z=-2h to satisfy Eq. (7.56). The perturbation velocity potential

h
FIGURE 7.6
Coordinate system for thin airfoil
77777 7 7 7 / /7 /7 inground effect.
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for this flow is

&=L [ e ine ~ 50+ 22+ In (e —xof + (2 + 201 iy
4rn -1

11 . z+2h oz
*5n Ll y(xo)[tan ! P tan~! ] dx, (7.57)

X —Xg

To apply the airfoil boundary condition (Eq. (7.55)), we need the limit of
the z component of velocity on the singularity strip, which is

ob _ o(x) 2h
8_( 0+)= f (x x)2+4h2dx

X — X

+2in£,”(x°)['x—1xo x - x0)2+4h2]dx0 (7.58)

Compare Eqgs. (7.55) and (7.58) and equate the terms that exhibit a jump
across the strip to get the source strength

dn,
=2— 7.59
o(x) =27 (7.59)
which is seen to be the unbounded fluid result. The remaining terms in the
boundary condition then become an integral equation for the unknown
circulation density y(x). This integral equation is written

j y(x)K(x — xo) do = —2 f e ) H(x — xo) dx0+2n<af—‘jizc) (7.60)

where
H )=__2h_
=
1 x
K= v

To solve the integral equation we use an approach due to Keldysh and
Lavrentiev (see Plotkin and Kennell’” for details) and seek an expansion in
1/h of the following form:

K(x) = §+ Rt éo K(%) (7.61a)
H(x)=h"" 2‘0 H(%) (7.61b)

&) =S h () (7.61¢)
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The expansion coefficients are found to be
H, = (-1)}*m™227(m+D (7.62a)
K, =(—1)+D22-(+D (7.62b)
when m is even and n is odd and are zero otherwise. Equations (7.61) are
substituted into the integral equation (Eq. (7.60)) and terms with like powers

of 1/h are collected. The following system of thin-airfoil-like equations for the
unknown v, (x) is obtained:

1
Yo(Xo) _ [ _ d’?c] _
| x =g Fo= 2w @ = | = () (7.63a)
1 1
¥Yn(Xo) f dn, -
L= - H o — — 7
-1X — X9 dx 2 —-1 . dx (xo)(x x(,) dxo

1 n—-1
2 Kn(x = X0)™Ynm—1(x0) dxo =, (x) (7.63b)
-1 m=0
The solution to Eqgs. (7.63) that satisfies the Kutta condition is obtained
with the help of Eq. (7.19) as

1 1-x{ 1+ x f,(x0)
Yn(x)_n_z 1+xf_l l_xoxo_xde (764)

For n =0, the unbounded fluid result is recovered

n) =2y alot s | gy Su] e

Let us find the first term in the expansions for the thickness, camber, and
angle of attack problems separately. Note that each expansion has either all
odd or all even terms so that the terms we neglect are two orders smaller than
the ones we keep. Since the thickness and camber problems require the choice
of a particular airfoil to proceed, let us begin with the angle of attack problem.

The expansion for the circulation density has terms for n =0, 2, 4, .
and for n =2 the function on the right-hand side of the integral equation (Eq
(7.63b)) is

X
1 +x((,)(x — Xo) dx,

1
f2 = _2K1aj
-1

P (1= xo)(x — x0) _
=3 qﬁdxo— S+ (7.66)

and the solution for the circulation density for n =2 is found from Eq. (7.64)

as
1— [ 1+x0x0+1/2
27 V1+x Vl——xo

1—x 3
T+« (x +3) (7.67)
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(Note that

f 1+x0f(x0)dx Y l+x f(xo)dx
1—x¢x0— 1V1- x%xo

is introduced so that the integrals in Appendix A can be used).
As an example to illustrate the camber effect, choose the parabolic arc
camberline given by

=p(1-x?)

The expansion for the circulation density has terms for n =0, 2, 4, . . . and the
unbounded fluid result (n = 0) is found from Eq. (7.65) as

_ 4B h—xf‘ 1+x0_dxo
Yolx) = = Vits —1x0 l—xox—x0_4ﬂv1—xz (7.68)
For n =2, the function on the right-hand side of the integral equation (Eq.
(7.63b)) is

wfx

f=pBx f_l(x‘xo)vl_xod%:T (7.69)

and the solution for the circulation density for n =2 is found from Eq. (7.64)

as
_B fl—xfl l+xo dxg —-B ——
2722 V1 +x L 1-Xxoxo—x 2 1-x (7.70)
As an example to illustrate the thickness effect, consider the approximate
Joukowski airfoil with thickness function given by

n=t(l-x)Vl1-x

The expansion for the circulation density has terms for n =3, 5, ... and for
n =3 the function on the right-hand side of the integral equation (Eq. (7.63b))
is

7 (! (2x(2) —xo— 1)(x — x0)2

= =_"h 1
ﬁ; 4 » Vl _x(z) de 4 (x + 4) (7.71)

and the solution for the circulation density for n =3 is found from Eq. (7.64)

1—x 1+x0 dxo T, [1—x
\/ -_ 5
1+xf (X0 +3) 1—x¢x9— 4 1+x(x+4) (7.72)

The lift coefficient for the airfoil is found from the nondimensional
circulation density as

Q=Ly@ﬂx (1.73)
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The lift coefficients for the separate angle of attack, camber, and
thickness effects which include the first term in the ground-effect expansion are
obtained by substituting Egs. (7.67), (7.70), and (7.72) into Eq. (7.73) to get

Angle of attack:

C,=2ma[l+th*+ O(h™)] (7.74a)

Parabolic arc camber:
=nB[1—3h~*+ O(h™%)] (7.74b)

Joukowski (thickness):
C=- 32h 3+ 0(h™) (7.74c)

Note that the first term in Eq. (7.74a) is identical to the result obtained in
Section 5.5 using a single-element lumped-vortex model (in Eq. (7.74a)
remember that h is normalized by the semichord). Additional terms for the
angle of attack and Joukowski solutions may be found in Plotkin and
Kennell.”? It is seen that for these examples and for the assumptions
connected with the expansions the ground plane increases the lift due to angle
of attack and causes a decrease in lift due to the airfoil thickness and camber.
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PROBLEMS

7.1. Find the second-order surface speed for the flow past a thin ellipse at zero angle of
attack.

7.2. Consider the flow of a uniform stream of speed Q. past a wavy wall given by
z=esinax, where € is small compared to the wavelength 2x/a. Find the
second-order perturbation velocity potential.

7.3. Consider the two-dimensional flow of a uniform stream of speed Q.. normal to the
chordline of a thin symmetric body given by

z=ztef(x) —-§<x<§ €K1

The solution for the velocity potential can be written
O =D+ ed, + €D, +

where @, represents the flow normal to a flat plate of length ¢ and satisfies the
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mathematical problem
VP, =0
ad,

oz

D,=Q.z as Z—>®

(x,0+£)=0

(a) Write the mathematical problem for @, (in terms of ®,).

(b) Find ,.

7.4. Derive the results in Eqs. (7.62a,b).

CHAPTER

3

THREE-
DIMENSIONAL
SMALL
DISTURBANCE
SOLUTIONS

In this chapter, three-dimensional small-disturbance solutions will be
derived for some simple cases such as the large aspect ratio wing, the slender
pointed wing, and the slender cylindrical body. Flow problems requiring more
detailed geometries will be treated in the forthcoming chapters.

8.1 FINITE WING: THE LIFTING-LINE
MODEL

The three-dimensional lifting wing problem was formulated in Chapter 4, and
it is clear that an analytic solution of the integral equations is difficult.
However, it is possible to approximate the lifting properties of a wing by a
single lifting line, an approximation that will allow a closed-form solution. In
spite of the considerable simplifications in this model it captures the basic
features of three-dimensional lifting flows, and predicts the reduction of lift
slope and the increase in induced drag with decreasing aspect ratio.

8.1.1 Definition of the Problem

Consider a lifting, thin, finite wing (described in Section 4.5) shown in Fig. 8.1,
which is moving at a constant speed in an otherwise undisturbed fluid. The free

193
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Starting vortex

Free “*vortex wake™’

b
2

FIGURE 8.1
Far-field horseshoe model of a finite wing.

stream of §peed Q- has a small angle of attack a, relative to the coordinate
system which is attached to the wing.

' The velocity field for this potential flow problem can be obtained by
solving Laplace’s equation for the perturbation potential ®:

Ve =0 (8.1)

Following Section 4.5, the boundary condition requiring no flow across the

wing solid surface will be approximated at z =0, for the case of small angle of
attack, by

odb an
E (x, Y, Oi) = Qm(a_ a’) (8.2)

therc? n= 1.(x, y) is the camber surface (placed near the x, y plane) and for
simplicity the subscript ¢ is omitted in this chapter. For modeling the lifting
surface, a vortex distribution is selected (as formulated in Section 4.5). The
unknown vortex distribution y,(x, y), and ¥y(x, y) (shown in Fig. 4.9) is placed

on the wing’s projected area at the z = 0 plane. The resulting integral equation
is

1 f (X = Xo) + ¥:(y — o) 3
—_—— x _ 17
4” wing+wake [(x - x0)2 + (y - )'0)2 + 22]3/2 de d}’o - Qm(a - a) (8.3)

A proper (and.u'nique) solution for the vortex distribution will have to fulfill
the Kutta condition along the trailing edge, such that the vorticity component
parallel to the trailing edge (y1g ) is zero:

YTe =0 (8.4
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Also, since vortex lines do not begin or end in a fluid (Eq. (4.64)), the solution
must comply with
v _ 97y
3y Ox

(8.5)

8.1.2 The Lifting-Line Model

The simplest model that can be suggested to solve this problem is where the
chordwise circulation, at any spanwise station, is replaced by a single
concentrated vortex. Also, these local vortices of circulation I'(y) will be
placed along a single spanwise line. Based on the results of Section 5.5 for the
two-dimensional lumped-vortex element, this vortex line will be placed at the
wing’s quarter-chord line along the span, —b/2 <y <b/2 (this bound vortex
line is assumed to be straight and parallel to the y axis, as shown in Fig. 8.1).
The above positioning of the vortex line at the wing’s quarter-chord line
effectively satisfies the Kutta condition of Eq. (8.4) as was shown in Section
5.5.

At this point, attention needs to be focused on the vortex theorems
requiring that a vortex line cannot start or end abruptly in a fluid (or Eq.
(8.5)). Therefore, if any change of the vortex line strength y, = dI'(y)/dy is
introduced, it must be followed by introducing a similar vorticity component in
the other direction y,. In other words, the vortex line does not terminate at
this point but it changes direction, and its strength remains constant.

The most physical application of these principles is to ‘“shed” these
trailing vortices into the flow and create a “wake” such that there will be no
force acting on these free vortices Following Section 4.7, this requirement
reduces to the condition that the flow along this segment must be parallel to I
(where positive I is according to the right-hand rule)

q X rwakc: =0 (86)

The most basic element that will fit these requirements will have the shape of a
“horseshoe” vortex (Fig. 8.1), which will have constant “bound vorticity” T’
along its quarter-chord line, will turn backward at the wing tips and will
continue far behind the wing, and eventually will be closed by the starting
vortex. It is assumed here that the flow is steady and therefore the starting
vortex segment is far downstream and its influence can be neglected.

A more refined model of the finite wing was first proposed by the
German scientist Ludwig Prandtl (see Ref. 5.2) during World War 1 and it
uses a large number of such spanwise horseshoe vortices, as illustrated by Fig.
8.2 (the following analysis is in the spirit of this early model). The straight
bound vortex I'(y) in this case is placed along the y axis and at each spanwise
station the leading edge is 1/4 chord ahead of this line and the local trailing
edge is 3/4 chord behind the vortex line. Now, let’s examine the integral
equation (Eq. (8.3)) for the case of the flat lifting surface, where o7/3x =0.
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Bound vortices
(lifting line)

Leading
edge

————— Trailing vortices
(wake)

specified here

Trailing
edge

c(y)

FIGURE 8.2

Lifting line model consisting of horseshoe vortices. The bound vortex segment of all vortices is
placed on the y axis.

The equation now simply states the boundary condition of Eq. (8.2):

aq)wing a(bwake

+* @ = .
oz Jz +Q=a=0 (8.24)

That is, the sum of the normal velocity components induced by the wing
Wp = 0P,/ 3z and wake vortices w; = 9P, ../3z, plus the normal velocity

component of the free-stream flow Q.a must be zero on the wing’s solid
boundary:

W, +w,+ Q.a=0 8.7

where w is considered to be positive in the +2z direction. The subscripts ( ),
and (); stand for bound (on wing) and induced (by wake) influences,
respectively.

The velocity component w,, induced by the lifting line on the section with
a chord c(y) can be estimated by using the lumped-vortex model with the
downwash calculated at the collocation point which is located at the 3/4 chord.
Consider the spanwise component (—y, =< ¥ = yo) of a typical horseshoe vortex
in Fig. 8.3 with strength AI'(y,). The downwash Aw, at the collocation point

(¢/2, y) due to this segment is given by Eq. (2.69) (see Fig. 2.15, which defines
the angles B in this formula) as

—AT

Aw, = 4d (cos B, — cos B,)
__TAr [ Y+ Yo N Yo—y ]
4mc(y)/12LV(e/2 + (v +y0)®  V(el2P + (yo—y)

THREE-DIMENSIONAL SMALL-DISTURBANCE SOLUTIONS 197

For a wing of large aspect ratio, we can neglect (c/ 2)? in the square root terms

et
e _ —AT()

c(y)
42
L |
The result for the complete lifting line (evaluated at y) is obtained by summing
the results for all the horseshoe vortices and is

Wy = T (8.8)
ZnM
2
Note that this is identical to the result obtained l_)y app!ying a locally
two-dimensional lumped-vortex model at each spanwise station, where the
downwash w; is measured at the 3/4 chord dug to a vortex I'(y) placed at the
1/4 chord position (see inset in the left hand S}(_ie of Flg. 8.2).

Next, the downwash due to the wing trailing vortices must.be evaluated.
Since a change in the spanwise circulation I'( y.) is glloyved, apd since no vortﬁx
can begin or end in the flow, the local change in this (':1‘rculgt10n is sheq into ;
wake. Thus, the wake is now constructed from seml—.mﬁm‘te vortex lxqes wit
the strength of (dT'/dy) dy (Fig. 8.2). Before prpceedmg Wl.th thg solution, thﬁ
velocity induced by a single, semi-infinite trailing vortex line with a stren.g(ti
AT =[~dT(y,)/dy] dy,, is evaluated (note thgt for positive AT on the +y side
of the wing, negative dI'/dy is needed). The rlght h.and side wake vortex line 1}2
located at a spanwise location y,, as shov.vn in Fig. ‘8.3,‘ and the downwa;s
induced by this vortex at the collocation point (c/2, y) is given by the re§ult for
a semi-infinite vortex line from Eq. (2.71). Since for a large aspect ratio wing
the collocation point is effectively on the y-axis, B, ~ x/2, f,~ n (in Fig. 2.15)

and therefore
AT (yo) 1

= — (8.9)
w(y) = — 2%
W)= (¥ = o)
yA
\ dlyo _ d];;_)’o) dyo
[32 /\ 0
Yo 1 T \-/] )
/2, ¥)
AT (yo) | >
h FIGURE 8.3
r\, y  Veélocity induced by the segments
T N4 of a typical horseshoe element.
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vs{hich .is exactly one-half of the velocit
dimensional) vortex of strength AI( Yo)-
normal velocity component induced b

y induced by an infinite (two.
With the aid of this equation the
y the trailing vortices of the wing

becomes
—dI'(yo) d
w _i jb/2 dy Yo
Y o4m 2 Y=Y (810)

'(Note that since the trailing vortices are assumed to lie in the z = 0 plane thej
induced spanwis? velocity component is zero from the Biot—SavarIt) Lavs1 Ff N
(2.68b).) Assummg. that the wing aspect ratio is large (b/ c¢(y)>1) has all;) i
us to treat a spanwise station as a two-dimensional section and to transferv;llen':-,1

boundary condition to the local three quart i
' er chord. i
and (8.10) into Eq. (8.7) yields ! chord. Substituting Eqs. ®8)

dr'(yo) d
LGS
2nc(y) 4 ) b Y=o + Q=0 (8.11)
2
Dividing Eq. (8.11) by the free-stream speed Q.. results in
dr'(yo) d

-T(y) 1 f"’z dy Yo

7c(y)0. 470 on y—ys %" 0 (8.11a)

This is the Prandtl lifting-line integrodifferential equation for the spanwise load

distribution I'(y). This equation can be vi inati
(a5 shown 1n Fog 8.4) e viewed as a combination of the angles

T ata=0 (8.12)
A

=y

FIGURE 8.4
Tvyo-dimensional section (in the y
« is reduced by the induced down

= const. plane) of a three-dimensional wi
ng. Th
wash of the trailing vortices by a;.  The anele of atiack
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where the induced downwash angle is (note that w is positive in the positive z
direction)

o~ —5‘3 (8.13)

Equation (8.12) can be rearranged as
a=0—0 (8.12a)

This means that in the case of the finite wing the effective angle of attack of a
wing section a, (the angle between the modified free stream velocity q in Fig.
8.4 and the chord) is smaller than the actual geometric angle of attack a by a;,
which is a result of the downwash induced by the wake.

It is possible to generalize the result of this equation by assuming that the
two-dimensional section has a local lift slope of m, and its local effective angle
of attack is a,. Now, if camber effects are to be accounted for too, then this
angle is measured from the zero-lift angle of the section, such that

pQI'(y)

C(y)= =mo(y)a.(y) 8.14
Consequently, Eq. (8.12a) becomes
a,=a—a— 0o, (8.15)

where «,, is the angle of zero lift due to the section camber (for cambered
airfoils, usually «; is a negative number). A more general form of Eq. (8.11a)
that allows for section camber and wing twist a(y) is now

dT'(yo) d
_21"(y) 1 b/2 dy 0 »
mo(y)c(»)Q= 47Q.. L,,Z Y~ +a(y)—aL(y)= (8.16)

In this equation a(y) is the local angle of attack relative to Q.. and a (y) is
the airfoil section zero-lift angle. If it is assumed that these geometrical
quantities are known, then I'(y) becomes the unknown in this equation. Also,
at the wing tips the pressure difference [or the lift pQ.I(y = £b/2)] must
reduce to zero:

I‘(y = :tg) =0 (8.17)

8.1.3 The Aerodynamic Loads

The solution of Eq. (8.16) will provide the spanwise bound circulation
distribution I'(y). To obtain the aerodynamic forces, the two-dimensional
Kutta-Joukowski theorem will be applied (in the y = const. plane). However,
because of the wake-induced velocity, the free-stream vector will be rotated by
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LA D
f
L F=pqxI’
a, — |
FIGURE 8.5 g
0 Tilting of the local (of section
: > > —»  y=const.) lift vector by the
\Q,L‘ D angle a; induced by the trailing
vortices.

@,(y), as shown in Fig. 8.5. This angle can be calculated for a known T (¥) by
using Egs. (8.10) and (8.13):

dI'(yo)
1 b2 g dy,
@, = 8.18
47Q.. [—b/z Y=Y ( )
By assuming that a; is small, then cos @; =1, and sin &; = qa; and the lift of the

wing is given by an integration of the local two-dimensional lift (see Eq.
(3.113)) as

b/2

L=pQ.| T(y)dy (8.19)

—bl2

while the drag force, which is created by turning the two-dimensional lift
vector by the wake induced flow, becomes

b/2

D;=pQ.| a(y)I(y)dy (8.20)

—br2

This drag is called induced drag because it is induced by the trailing vortices.
This finite wing’s drag is directly related to the lift and will diminish as the wing

span increases (b— «). Equation (8.20) can also be rewritten in terms of the
wake-induced downwash w;:

D= -p[  wOITO)dy (8.20a)

From the engineering point of view, the total drag D of a wing includes the
induced drag D; and the viscous drag Dy:

D=Di+DO

For example, the two-dimensional viscous drag of a NACA 0009 section is
presented in Fig. 5.19.
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8.1.4 The Elliptic-Lift Distribution

he spanwise circulation distribution T'(y) for a given planfor_m -sha'pe .(;)ant -be
e 'rﬂzd by solving Eq. (8.16). In the particular case of an elliptic distri uhlon
Olf)t:;ie circulation, the solution becomes rather simple1 sl;ncehthe d;)v:nwa;ingzs,-
N , i Also, as will be shown later,
s constant along the wing span. ,as w .
ll:zs(i)x?;esuch a spanwise distribution will have minimum induced drag. The

proposed distribution of I'(y) is shown in Fig. 8.6 and is

F(3) = T 1 - (b—y/g)] (8:21)

i i hat the constant I',,, can be
i t be substituted into Eq. (8.16) so t :
Z\lllzﬁu;?gcsi. For simplicity, let us first calculate the downwash integral (second

term in Eq. (8.16)). The term dT(y)/dy is evaluated by differentiating Eq.

(8.21): 212, 4
2=t -] )

and the downwash w; is obtained by substituting this result into Eq. (8.10):
bf2 29-1/2
wi(y) = Lomes f [1 - (—y"—) ] Yo dy, (8.22)
' xb® —b/2 b/2 Y—Y

Note that when y = y,, this integral is singular and ther;fore must be ’evgluate(il
based on Cauchy’s principal value. It is possible to arrive at Glauert’s integra

(Eq. (5.22)) by the transformation

y= g cos 8 (8.23)

dy = —%sin 0de (8.23a)

and at the wing tips y = —b/2, 6 = and at y =b/2, 6 =0. This reduces Eq.
(8.21) to
I(0) = Cpax[1 — c08” 8]"% =Ty sin 6 (8.21a)

rﬂ‘

I'(y)

FIGURE 8.6 _
v Elliptic spanwise distribution of the

circulation T'(y).

Nﬁ'\
=
g

SIS
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Substituting Eq. (8.23) into Eq. (8.22) yields

b b
—cos 90(— 2 sin 00) de,

Coax ° 2
W, = erzf [1 - cos® §,]~1»

> (cos 8 — cos ;)

The principal value of this integral c b i :
integral (Eq. (5.22)): g an be obtained by using the Glauert

W= ~Imax [ cos 6, d6, —I“malx 7T sin @
272b Jy (cos 6, —cos §) 27b sin 6

Consequently, w; and «; become

TS (8.24)
a = l—‘max
' 260.. (8.24a)

and are constant along the wing span.
Another feature of the elliptic distribution is ise i
that the spanw i
simply half the area of an ellipse (with semi-axes I, and br/)2) e Tntegrals

b2 rmax b b

I
Lot B =T = T (8.25)

Consequently the lift and the drag of the wing can be evaluated:

b/2

L=pQ. " L(y)dy =—- pQw max (8.26)
b/2
D,= pr aT(y)dy = a, < "““)- =z
(y) 34 Q’,L 2bQ pQ rmax_gprilax (827)
The lift and drag coefficients become
C = L bl
L 2pQ2S 2 S Qw (8.28)
__ D S . 15
Cp = = =——=C? (8.29)

1pQ2S 45 Q2 b2

Substituting the spanwise downwash (E
. ystitl q. (8.24)) and the elli -
tion distribution (Eq. (8.21)) into Eq. (8.16) yields ) © elliptic circula

e [ ) | et -an=0 @)

This equation provides the relation between the local chord ¢(y) and the local
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angle of attack a(y) for the wing with the elliptic circulation distribution. If
the chord c(y) has an elliptic form, too, the constant I'y,, can be easily

evaluated. Thus, assume
y 2172
c(y)= Co[l - (m) ] (8.31)

where ¢, is the root chord. Substituting Eq. (8.31) into Eq. (8.30) cancels the
elliptic variation:
—2@ max
mo(y)coQ- 2wa
For an elliptic planform with constant airfoil shape, all terms but a(y) in this

equation are constant, and therefore this wing with an elliptic planform and
load distribution is untwisted (a(y) = « = const.). The value of I',,,, is then

St a(y) - a(y)=0 (8.32)

26Q.(a — )
—_—— (8.33)

moCo

Fax =
1+

The area § of the elliptic wing is
cob
S=m—= .34
Y (8.34)
Also, it is common to define the wing aspect ratio R as
b2
TS
Using the AR and the area S for the elliptic wing and substituting into Eq.
(8.33), I'..x becomes

(8.35)

= —_— .33
= 22 (8.3%)

With this expression for [, and using mo =2z, the lift coefficient (Eq.
(8.28)) becomes

27
C.= > (a—a,)=C(a—ay) (8.36)
1+—
R
Here C,_is the three-dimensional wing lift slope and the most important
conclusion of this analysis is that this slope becomes less as the wing span
becomes smaller due to the induced downwash. This is illustrated by Fig. 8.7,

where for a wing with given a;, the effective angle of attack is reduced by «;
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‘P Two-dimensional
ol lift-slope
Three-dimensional
lift-slope

;
ay

0 a, 2| Angle of attack
l a

according to Eq. (8.15). Consequently,
needed to achieve the same lift coeffici

FIGURE 8.7

The reduction of lift slope for
three-dimensional wings.

for finite-span wings, more incidence ig
ent as the wing span decreases.

The induced drag coefficient is obtained by substituting Eq. (8.35) into
Eq. (8.29),
Cp = 1 c?
0= = CiL (8.37)

which indicates that as the wing aspect ratio increases the induced drag
becomes smaliler. Also, the induced drag for the finite elliptic wing will
increase with a rate of C? as shown in Fig. 8.8.

The lift slope C,_ versus R for the elliptic wing (Eq. (8.36)) is shown in

Fig. 8.9. The lift slope of a two-dimensional wing is the largest (2r) and as the
wing span becomes smaller Cy, decreases too.
The spanwise loading L'(y) (lift per unit

span) of the elliptic wing is
obtained by using the Kutta-Joukowski theorem:

y 29172
L'(y) = pQ.T(y) = mermx[ 1- (E) ] (8.38)
Cp
o4 L
¢, FIGURE 8.8

Lift polar for an elliptic wing.
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R =0
/A
M- -~
C
ta 2n p
nF C""z 2
1+/R
L1 [ S B B l() 111 12
o 1 2 3 4 5 6 7 8 91
R
FIGURE 8.9

Variation of lift coefficient slope versus aspect ratio for thin elliptic wings.

ipti he spanwise lift distribution L'( ){)
i .10 shows an elliptic planform. and t :
fl:g;lriz zlliptic too. As Eq. (8.24) indicated, the downwash of such a wurlngu;i
oar‘xstant and combined with the velocity induced by the bound V(l))r'te):j n;:,ormal
ge e ual, to the upwash of the free stream Q.a so that the com .meOSSible 2!
velo::lity component is zero, according tollEq. (8.17).f(Nn(])tei) ltlttu:; 1tth1:t;z ossible to
ipti i i iptic planform, ,
liptic loading with other than an ellip : .
:l:';/s‘: ?)lrlgamber needs to be adjusted so that w; will remain constant.)

L'(y)y=pQ,.I(y)

y 2
F(y) = T'oa J1 ={575]
/
|
[‘max
[ i %1
- b
& N S
o Ve s Y
_b | b
2 y ¥ 3
rn\ax —
2 " FIGURE 8.10 .
Chord and load distribution for a
1 T2l thin elliptic wing. Note that the
Moo induced downwash is constant and
’ combined with the downwash of
b1 bt B the bound vortex is equal 'to tl.le
Cta ~au) free-stream upwash, resulting in

Upwash zero velocity normal to the wing
0 surface (Eq. (8.7)).
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The section lift coefficient C, is defined by using th
(831 and | y using the local chord from Eq.
= L ,(y ) _ Zrmax _
%PQiC(}’) €oQ -
Thus, for the elliptic wing, both section lift coefficient ing li i
s, for the ctent and wing lift coefficient

1 C,

C = 2n
1= 5 (@—a)=C, (a— @) (8.39)
1+—
R
Similarly, the section-induced drag coefficient is
L'(ya, 18
Co=7—5—""—-=—=Ci=
“TIp0ie(y) " xb? = (8.40)

The strength of the circulation in the wake is

dT(y) _ 4lpe  y

Y-

This spanwise wake vortex strength is shown schematically in Fig. 8.11. It is
clear from this figure that near the wing tips, where |dI'(y)/dy| is the largest, the
w?ke vortex will be the strongest. Owing to the induced velocity at the wal;e it
will roll up, mostly near the wing tips, to form two concentrated trailing

(8.41)

FIGURE 8.11

Schematic description of the pressure di TR
wing. P P e difference and wake vortex distribution of a thin elliptic
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FIGURE 8.12

Flow visualization of the rollup of the trailing
vortices behind an airplane (wing tip vortices
made visible by ejecting smoke at the wing
tips of a Boeing 727 airplane, Courtesy of
NASA).

vortices as shown by the flow visualization in Fig. 8.12. The effect of this wake
rollup on T'(y) is assumed to be negligible in this model; but this effect can be
investigated by the numerical methods of later chapters.

8.1.5 General Spanwise Circulation

Distribution

A more general solution for the spanwise circulation I'(y) in Eq. (8.16) can be
obtained by describing the unknown distribution in terms of a trigonometric
expansion. Using the spanwise coordinate 6, as defined in Eq. (8.23), the
following Fourier expansion is selected:

r(0)=2bQ.>, A,sinné (8.42)
n=1

The shapes of the first three symmetric terms in this expansion are shown
schematically in Fig. 8.13, and all terms fulfill Eq. (8.17) at the wing tips:

I0)=T(7)=0 (8.43)
Substituting I'(8) and dI'(6)/dy into Eq. (8.16) yields
—4b <
—— D, A,sinnd
mo(0)c(6) n§=:1
= 1 b .
0 2 A,n cos n(-)o—b-— (—-Esm 6, df)(,)
b =t ) sin 8,
- + a(0) — a,(6)
27 )y b
P (cos 6 — cos 6,)
—4b & ) 1 ("Y5_,nA,cosnb,db,
- >4 [ +a(6) — a, () =0
my(0)c(6) ,Z, nSIRT = fo cos B, — cos 8 a(6) — a1,(6)

(8.44)
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r=26Q,_ E A, sin n8

n=1

A, sin8

Aj; sin 36

As sin 58

0 )/i\ T g > FIGURE 8.13
2 Sine series representation of symmetric
\W spanwise circulation distribution I'(8),
n=1,35,....

By using Glauert’s integral (Eq. (5.22)) for the second term, this equation
becomes

m*o(;;f(ﬂ)E A,sinnf — "21 nA, Slnn60+a(0) 2.(6)=0 (8.44a)

Comparing this result with Eq. (8.16) indicates that the first term is —a, and
the second term is —a;:

—~ sin n6
i 0 = An A .
a(0) Z,ln oy (8.45)
Therefore the section lift and drag coefficients can be readily obtained:
PQI(6)  4b &

= A, sinn6 8.46
" 1p0%(6)~ i(0) 2" (846

4 & sin k0
4= Co; = (9) 2 A, sinn 2 kA, prag (8.47)

The wing aerodynamic coefficients are obtained by the spanwise integra-
tion of these section coefficients:

e dy 4b("
GO dy_4b(" S innelsnods (.48
—bR2 S S 0 n=1 2

bI2 C c d 2b2 nH ®© o
Cae)dy 25" (" S S 44 4 ink6sin n6d6 (8.49)

—b/2 S S 0 n=1k=1

CL=

CD, =

Recall that

0 forn#k

/2 forn=k (8.50)

j sinn@sin kO do ={
0
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and for the lift integral only the first term will appear. The lift coefficient
becomes
wh2A,
S

C.= = aRA, (8.51)

For the drag, only the terms where n = k will be left:

xh? &
Cp=—5- > nAl= n/RZ nA? (8.52)
n=1 n=1

By using the results for the lift, this can be rewritten as

mR?A? = nA? CL > nA?
Cp,= R ! [1 + 22 a2 ] R [ 2 ] (Cp)etiptic(1 + 8y)
(8.53)

where 8, includes the higher-order terms for n =2, 3, .. . (only the odd terms
are considered for symmetric load distribution). This clearly indicates that for
a given wing aspect ratio, the elliptic wing will have the lowest drag coefficient
since 8; =0 and &, = 0 for the elliptic wing.

Similarly, the lift coefficient for the general spanwise loading can be
formulated as

CL=aRA, =m(a—a,,) (8.54)

Assume that the wing is untwisted and therefore o — a;, = const. Following
Glauert (Ref. 5.2, p. 142) we define an equivalent two-dimensional wing that
has the same lift coefficient C,. This wing is now set at an angle of attack
a* — a4, such that

CL=2.71'(C¥*— a/Lo) (855)

The difference between these two cases is due to the wake-induced angle of
attack, which is obtained from these two equations

1 1 C
(a—alo)—(af*—aLo)=CL[;-ﬂ]E]—tzﬁ(1+62) (8.56)
and
_ a—a, 1 ]
T+ 52_”‘{{[ ARA, 27

where &,>0. Taking A, from this relation and substituting into Eq. (8.51)
results in

2n(a—ay)

CL= (8.57)

2
1+E(1+62)
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Thus, for the elliptic wing 6, =0 and also its lift coefficient is higher than for
wings with other spanwise load distributions.

8.1.6 Twisted Elliptic Wing

The spanwise loading of wings can be varied by introducing twist to the wing
planform. To illustrate the effects of twist, consider a wing with an elliptic
chord distribution. For this purpose let us rearrange Eq. (8.44a) such that

~ . 4b n
"§=jl A, sin ne[mo )0 + = e] = a(0) — a, (0) (8.58)

This is the governing equation for the coefficients for the circulation
distribution for the general case that is described using lifting-line theory.
Section 8.1.4 presents an exact solution for an untwisted elliptic planform wing
(elliptic loading) but solutions for other cases must be obtained numerically
using techniques that will be described in later sections. It is of interest to
study the effect of wing twist on the solution for a particular geometry
(geometric twist occurs for a spanwise variation of angle of attack and
aerodynamic twist occurs for a spanwise variation of the zero-lift angle).

Filotas®' has found a closed-form solution for a wing with an elliptic
planform and arbitrary twist and that solution will be presented in what
follows. Consider an elliptic chord distribution as given in Eq. (8.31):

c=cosin 0 (8.59)
and for simplicity let m,=2x. Then Eq. (8.58) becomes
o . R .
> A, sin n0[7 + n] = [a(6) — @, (0)] sin 6
n=1

where the aspect ratio of the elliptic wing is R = 4b/ac,. Note that the above
equation is a Fourier series representation for the right-hand side whose
coefficients are given by

2

e I“W’)— a1,(6)] sin 8 sin n6 d6 (8.60)
0

To find the wing lift coefficient, the coefficient A, is obtained as

2 1 n
A=S— _ -
1 aR/2+ 14’:) [a(8) — @ (0)]sin” 6d6
=2 ["1a(0) - v (6)]sin* 0.6
TaR+2h " a(6)] sin
and the lift is obtained by using Eq. (8.51):
AR (7 .,
CL—/R+2J; [a(g) CYLO(B)] sin° 0d6 (861)
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Example 1. As an example consider a wing with a linear twist where

L’ =a  a,|cos 6]

a(y)=ata b2

The effect of the twist can be analyzed by taking the variable part of a(y) only,
and adding the contribution of the constant angle of attack later. Therefore, let

a(y) = ao |cos 6]

and by using Eq. (8.60) the coefficients A, are computed as

1:—;1:23—/;4-—7; meos 6 sin 6 sinn6do =%ﬁ
_2 1 [sin (n—2)8 sin(n +2)01|"’2
aR/12+nl 2(n-2) 2n+2) 1o
1 1 [sin (n—2)n/2 sin(n +2)7t/2]
aR[2+n (n-2) (n+2)
Evaluating the individual coefficients for a wing with &R =6 and for a twist
of & = a, |cos 8] and substituting into Eq. (8.42) yields

2b0..a,
F 4

/2
f sin 26 sin n6 dO
0

r(8)= [4sin 6+ f5sin30 — 5sin 50 + 2%5sin 76 + - - -]

For a twist of a = a,(— |cos 6}), the circulation is

r(0) ~ 202 [~1sin 8 —%sin36 + 3 sin 50— Zssin76 + - - ]

n
These results, combined with an additional constant angle of attack « are plotted
schematically in Fig. 8.14, which shows that having a larger angle of attack at the
tip will increase the load there. Similarly, larger angles of attack near the wing

root will increase the loading there.

rA
a larger at tip
-+ . -
: : Nontwisted elliptic
~/ N, loading
a larger at
wing root

<y

+b
2

FIGURE 8.14
Effect of wing twist on the spanwise loading of an elliptic wing.
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8.1.7 Conclusions from Lifting-Line Theory

The most important result of the lifting-line theory is the ability to establish the
effect of wing aspect ratio on the lift slope and induced drag. Some of the more
important conclusions are:

1. The wing lift slope dC,/da decreases as wing aspect ratio becomes smaller
(as shown by Eq. (8.36) for an elliptic wing and by Eq. (8.57) for a wing
with general spanwise circulation).

2. The induced drag of a wing increases as wing aspect ratio decreases (as
shown by Eq. (8.37) for an elliptic wing and by Eq. (8.53) for a wing with
general spanwise circulation).

3. A wing with elliptic loading will have the lowest induced drag and the
highest lift, as indicated by Eqs. (8.53) and (8.57).

4. This theory also provides valuable information about the wing’s spanwise
loading, and about the existence of the trailing vortex wake.

5. The theory is limited to small disturbances and large aspect ratio and, also,
Eq. (8.6), which requires that the wake be aligned with the local velocity,
was not addressed at all (because of the small angle of attack, a,
assumption).

6. There are possible modifications to this theory, such as the addition of wing
sweep (e.g., Weissinger®?). However, the study of wings with more
complex geometry is difficult with this model, whereas some of the more
refined methods (introduced in the following chapters) are clearly more
capable in dealing with this problem.

7. Using the results of this theory we must remember that the drag of a wing
includes the induced drag portion (predicted by this model) plus the viscous
drag which must be taken into account.

8.2 SLENDER WING THEORY

In this chapter three-dimensional solutions that rely on the small-disturbance
approximation are presented. By assuming that the wing is long and narrow
(R K1), and that its angle of attack is small, the special case of slender-wing
theory can be developed.

8.2.1 Definition of the Problem

Consider the slender wing of Fig. 8.15 with a span b(x) and root chord c,
where both the wing camberline # and its angle of attack are small:

tan ¢y K 1 and h <1
c

and we consider wings with no spanwise camber (dn/3y =0). The flow is
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ZA

FIGURE 8.15
Nomenclature for a slender, thin,
x  pointed wing.

0., .

I ‘
assumed to be incompressible and irrotational and therefore the continuity
equation is

Vo =0 (8.62)

with the boundary condition requiring no flow across the wing solid surface.
This will be approximated at z = 0 for this case of small angle of attack and the
z component of the total velocity w*(x, y, 0+) must be zero:

5 3
We(x, ¥, 0£) = 2= (x, y, 0£) - Qm<é;"— a) =0 (8.63)

In order to solve this problem, singularity elements that create antisymmetry
(pressure jump) in the z direction are sought. The doublet solution based on
the 3/9z derivative (see Eq. (3.36)) is the most suitable and it is developed for
the general lifting surface in Section 4.5. By distributing these doublet
elements over the surface of the wing, we obtain the following integral
equation (Eq. (4.45)) for the boundary condition of zero normal flow:

1 [ 1(xo, Yo) [ (x —%o) ]
— 0+ dx, dy,
4n wing +wake ()’ - )’0)2 \/(x - x0)2 + (y - y0)2 + 22 070

- Qm<% - a) =0 (8.64)

This integral is singular and its principal value must be evaluated, but before
proceeding further, owing to the slender wing assumption some simplifications
can be made. Since for the slender wing x >y, z we can assume that the
derivatives are inversely affected:

3 49 @

— K, — .65
ox Jdy oz (8.65)

Substituting this into the continuity equation (Eq. (8.62)) allows us to consider
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the first term as negligible, compared to the other derivatives:

Fo &P
Wt —— = 8.66
Vo 8y2+822 0 (8.66)

This can be interpreted such that the cross-flow effect is dominant, and for any
x station, a local two-dimensional solution is sufficient. This is described
schematically in Fig. 8.16. Also, for small-disturbance compressible flow (see
Section 4.8), this implies that the Mach number dependency is lost and these
solutions are applicable to supersonic potential flows as well.

Since the flowfield is now sought in the two-dimensional plane (x =
const.), the angle of attack and camber effects can be included in a local angle

of attack a(x) such that

3
a(x)za—-a—;’

Recalling the slenderness assumption that
Ix — xol > |y — yol, |2
the kernel in the integral of Eq. (8.64) becomes
- for x >x
[1 * \(T— xo)(2x+ (;\;0i y0)2 + 22] = {3 fo: x <xz (8.67)

The physical interpretation of this result is that portions of the wing al}ead of a
given x section (x > xo) will have influence on the wing, wherea§ the 1gﬂpence
of wing sections and the flow field behind this x section (x <x,) is neghg_lblt?—
thus the effect of the trailing wake for slender wings is small! By substituting
this result into the boundary condition (Eq. (8.64)) and recalling that on the

zj}

+b(x)

2
Qa(x)
M

FIGURE 8.16
Streamlines of the crossflow as viewed in the x = const. plane.

THREE-DIMENSIONAL SMALL-DISTURBANCE SOLUTIONS 215

wing z =0, Eq. (8.64) reduces to

L e

270 )by (¥ = yo)?
which must be solved for any x = const. wing station with local span b(x). Note
that by selecting the doublet distribution in the two-dimensional cross section,

this boundary condition can be independently derived by integrating the
two-dimensional doublet-induced velocity (Section 3.14).

dyo = —Qa(x) (8.68)

8.2.2 Solution of the Flow Over Slender
Pointed Wings

The integral equation (Eq. (8.68)) for the unknown doublet strength contains a
strong singularity at y =y, (see Appendix C for a discussion of the principal
value of this integral). Recalling the results of Section 3.14 that a doublet
distribution can be replaced by an equivalent vortex distribution [e.g.,
du(y)/dy = —y(y)] allows us to use some of the results of thin-airfoil theory
for the crossflow plane solution when the vortex distribution is used instead.
The proposed vortex distribution consists of horseshoe type vortices distrib-
uted continuously over the wing. This vortex model is described schematically
in the right hand side of Fig. 8.17, where for the purpose of illustration,

FIGURE 8.17
Horseshoe model for the slender, thin, pointed wing.
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X = const.
Y(y)
e ———
¥
—b +§ FIGURE 8.18
2 Vortex distribution in the cross-
Q..a(x) flow (x = const.) plane.

discrete horseshoe elements are used instead of the continuous distribution. At
any x =const. section the trailing vortices form a two-dimensional vortex
distribution of circulation per length y(y) along the strip —b(x)/2<y<
b(x)/2, z =0 as shown in Fig. 8.18. Note that in the crossflow plane, owing to
left/right symmetry, the total circulation is zero, and the lift is generated by
the spanwise segments of the horseshoe vortices (as shown in the left hand side
of Fig. 8.17). The perturbation velocity potential for this two-dimensional
crossflow (modeled by the vortex distribution shown in Fig. 8.18, and
formulated in Section 3.14) at any x station is

1 [peon Lz y )
d=— f tan~ 8.
27 ) by Y(30) (y—y0) " (

Observe that the positive vorticity vector in the Y-z plane points in the positive
x direction, as shown in Fig. 8.18. The velocity components in the x = const.
plane, due to this velocity potential, are

odb
v(x,y, 0t)=-——= 1) (8.70)
3y 2
P 1 [ dyo
w(x, y, 0+ =—=—f 8.71)
2, 04) 9z 2% ) peon Y(yO)(y-yo) (

Because of the slender wing assumption, only the local trailing vortex
distribution (parallel to the x-axis) will affect the near-field downwash. By
substituting this vortex distribution-induced downwash into the wing boundary
condition, Eq. (8.63) becomes

1 fb @ dy,

7(¥o) = —Q.a(x) (8.72)

27 )by (y —y0)

Comparing this form of the boundary condition with the formulation for high
aspect ratio wings (Eq. (8.11)) clearly indicates that due to the slender-wing
assumption the effect of the spanwise vortices was neglected.

The solution for the vortex distribution, at each x station, is reduced now
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to the solution of this equation for y(y) with the additional condition that

b(x)12
[ vmay=0 8.73)

—b(x)/2
Because of the similarity between this integral equation (Eq. (8.72)) and the
lifting line equation (see Eqs. (8.10) and (8.11)), a solution of similar form .is
proposed. Let the spanwise circulation I'(x, y), at each x section, be an elliptic
distribution as in Eq. (8.21):

y 29122
I(x, y)=T(y) = Fmax[l - (b(x)/2> ] (8.74)
The physical meaning of this circulation is best described by observing
the horseshoe vortex structure shown in Fig. 8.17 where the downwash
induced by the spanwise segments of the horseshoe vortices ahead of this x
station is neglected when evaluating the boundary conditions. Then if the total
circulation ahead of an x = const. chordwise station is replaced by a single
spanwise vortex line, as shown in the left side of Fig. 8.17, then its strength will
be I'(y).
The spanwise distribution of the trailing vortices (shown in Fig. 8.18) is
obtained by differentiating with respect to y (as in Eq. (8.41)):

_dT(y) _ Al y

Y- G2) ]

Substitution into the integral equation, Eq. (8.72), results in

y(y)= (8.75)

%f::z ZE:;; [1 B (}’0 " )2] ( yd_yoyo) =—Qa(x) (8.76)

b(x)/2

But this integral has already been evaluated in this chapter (see Eq. (8.22))
and resulted in a constant spanwise downwash. With the use of the results of
Eqgs. (8.22) and (8.24) the spanwise integration yields

o ab(x)

fb(x)/z Yo ( d )_ 2 (8'77)
~beyz | Yo V1Yo
[1 B (b(x)/2> ]
and Eq. (8.76) becomes
I’
max — .78
b(x) Q-a(x) (8.78)

which shows that the spanwise induced downwash due to an elliptic circulati(.)n
distribution is constant and independent of y. The value of T, is easily
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evaluated now and is
Fimax = b(x)Qua(x) (8.79)
To establish the relation between the velocity potential and I" consider a path

of integration along the local y axis (for an x = const. section)

Y F r
o(x, y, Oi)zf Mdy=i(_y)
—b(x)2 2 2

where the integration starts at the left leading edge of the x = const. station
and the integration path is above (0+) or under (0—) the wing. Therefore, the
potential jump (A®) across the wing and the lift of the wing portion ahead of
this x station (pQ.I'(y)) are elliptic too:

A®(x =const., y) = O(x, y, 0+) — P(x, y, 0—) =2®(x, y, 0+)
=T'(x =const.,y)=T(y) (8.80)

as shown in Fig. 8.19. Note that the local I'(y) is equivalent to the sum of all
the spanwise bound vortex segments of the horseshoe elements ahead of it (see
left side of Fig. 8.17) and therefore is equivalent to the lift of the wing portion
ahead of this x station.

By substituting y(y) and I, into Eqs. (8.69-8.71), the crossflow
potential and its derivatives are obtained:

(8.81)
?] —yz} (8.82)

This differentiation can be executed only if wing planform shape b(x) and

oD 2]
u(x,y, 0t) =§(x, y,01)= iQwé} {a(x) [

Ad(y) =T(y)

FIGURE 8.19
Elliptic spanwise loading of the slender thin
x wing.
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angle of attack a(x) are known. The spanwise velocity component is
YY) _ £ Qeyxlx)
G
2 4

(Note that y(y) can be obtained as a solution of Eq. (8.72) directly from Eq.
(7.18).) Based on Egs. (8.71-8.72) the downwash on the wing is

oP
v(x, y, 01) = a—y(x, y, 0£)=%F (8.83)

o
wix, y, 02) ==~ (x, y, 03) = —Q.a(x) (8.84)

The aerodynamic loads will be computed with the use of the linearized
Bernoulli equation (Eq. (4.53)). The pressure jump across the wing is given by

3
Ap=p(x,y,0-) = p(x, y,0+) = pQ..— A® (8.85)
and this pressure difference across the wing is then

Ap = Pnga; AD= 2pQ§aix {a(x) [%]2 _yz}

=P Qi_éa} {“(x)b(x)[l - (b(xy)/2>2]1/2} (8.86)

For example, let’s assume that the wing’s angle of attack is constant a(x) =
and for this case the pressure difference becomes

b(x) db(x)/dx
bx)*_

2]
This spanwise pressure distribution is plotted in Fig. 8.20, and for a delta wing

Ap(x, y) = g Q2a (8.87)

Ap
y $pQ2

< “Real trailing edge”
Real trailing edge™  bIGURE $.20

Spanwise pressure difference dis-
tribution of the slender wing at an
x x = const. plane.
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Leading
edge

AR =1, delta wing

Trailing edge

FIGURE 8.21
Pressure difference distribution on a slender delta wing.

with straight leading edges, the pressure difference is plotted in Fig. 8.21. It is
clfaar fron} these figures that this solution has an infinite suction peak along the
wing lead'lng edges. It seems as if the trailing edges of a high aspect ratio wing
(v_vlple being swept backward) were folded into the root-cho:d and they are not
v1s1blez and consquently the lowest Ap at each x station is at the centerchord.
/}lso stllrllce the:1 tralimg edge is not visible, the Kutta condition is not fulfilled
along the “real trailing edge,” which resembles the side ed f this i i
high aspect ratio wing. e oF this imaginary
The longitudipal wing loading is obtained by an integration of the
Spanwise pressure difference and with the use of the result of Eq. (8.25) that

b(x)/2 2712
y 7h(x)
-Gl | #-
f_b(m [ bwi2) | Y= (8.88)
With this in mind,
dL b(x)/2 3 b(x)/2 2912
- = Apdy=in—{oz(xbx [1—-<L)] }
dx ~b(x)2 ox ) ( ) —b(x)2 b(x)/2 dy
_ POz 3 2
7 o [a(x)b(x)?] (8.89)
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The interesting conclusion from this equation is that if there is no change
either in a(x) or in b(x), there will be no lift due to this section. Also for a
wing with linear b(x) (delta wing) and constant « the longitudinal loading is
linear too.

The lift of the wing from the tip to a section x is obtained by integrating
dL/dx along x:

= "L e =2 pQ2 ()b ()] (8.90)

This means that the lift of the wing up to a given x station depends on the local
a(x), b(x) and db(x)/dx only. For the complete wing, therefore, it is a
function of its maximum span b and a (at this chordwise station):

L= ginabz (8.91)

When the wing extends behind its maximum span (and the slope db(x)/dx is
negative) the contribution to the lift due to this portion is excluded by this
model. Therefore, by using the maximum span in Eq. (8.91) the difficulties for
wings having negative db(x)/dx near the trailing edge are avoided.

The spanwise loading, at any x station, is obtained in a similar manner:

dL ) y 2y172
L_portn=peisefi-[ 21" @
a4 PQ-I(y) = pQub(x)a(x) b0)/2 (8.92)
which is an elliptic spanwise load distribution, as shown in Fig. 8.19. The lift
up to any section x can be obtained by the integration of the spanwise loading
as well:

L= %y =T p02awpy) (89)
-br2 @Y 4
The lift coefficient is obtained by using Eq. (8.91),
C=Tl o Ra (8.94)
2S 2

and the induced drag coefficient (using Eq. (8.29)) for this elliptic distribution
is
1S o

If the drag force is a result of the pressure distribution only then its magnitude
is expected to be C,w, but this result of Eq. (8.95) indicates that the
“leading-edge suction” is reducing the drag by 1/2. This can be shown by
observing the suction force acting along the leading edges, as shown
schematically in Fig. 8.16, which is a result of the rapid turning of the flow at
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this point. The magnitude of this force was calculated in Section 6.5.3 (&4
(6.52)) and is positive along the right leading edge, q

mpb(x) «

F,= 4 (Qa)® i

and negativg along the left leading edge (here, for simplicity, a(x)= wab;
assumed). Since this force acts on both leading edges of the wing, no net.

sideforce is created; however, these forces will have a forward-pointing
component of magnitude T:

25
T

< 2 n ¢ db(x)
ST (R SO N T P
L T dx g PL-0 ) b)) = =7
Con§equently the drag force is the pressure difference integral Lo minus the
leading edge thrust La/2 and is equal to only one-half of L, as obtained in
Eq. (8.99).
The pitching moment about the apex of the wing is

CdL C d '
M, = fo Zxdx=%”info x = [a(0)b(x)?] dx (8.96)

-

A w7

Qza,zb_2_ La“:
Pl 2 )

Again, in order to evaluate this integral, the angle of attack and span variation
with x are needed. As an example, consider a flat triangular delta wing with a
constant angle of attack a where the trailing edge span is by :

x
b(x)=brg -
c
and by substituting this into Eq. (8.96),

T L[ dT X, 7 2c 2
Mo=2 02 fo s |os bT.E.]dx=3inab%.Eg=L—3— (8.97)

and the center of pressure is at the center of area

xcp _ MO _
T—E_% (8.98)

8.2.3 The Method of R. T. Jones®?

The results of slender wing theory were obtained by R. T. Jones in a rather
simple and elegant manner in 1945. Here we shall follow some of the basic
ideas of his method.

First, let’s examine the flowfleld due to a slender pointed wing in the
crossflow plane (as shown in Fig. 8.22). This plane of observation is fixed to a
nonmoving frame of reference, and as the wing moves across it, its momentary
cross section increases. Since the flow is attached to the wing, the flowfield in
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Stationary plane of
observation

FIGURE 8.22
A slender wing moving across a stationary
plane.

this two-dimensional observation plane is similar to the case of a flow normal
to a flat plate (see Fig. 8.23). The velocity potential difference across the plate
in this flow, as was shown earlier (Section 6.5.3) is

A®=bw[1— (bL/Z)Z (8.99)

where b is the span of the plate and w is the normal velocity component (in
this case w(x) = Q.a(x)). However, this two-dimensional flow will not result
in any forces because of the symmetry between the upper and lower
streamlines. The only possibility to generate force, in this situation (with zero
net circulation), is to create a change with time (e.g., due to the p(3®/dr)
term in the unsteady Bernoulli equation (Eq. (2.35))). Consequently, the R.
T. Jones model suggests that the lift will be generated only if the fluid particles
will be accelerated, relative to a “‘ground-fixed” observer.

To demonstrate this principle, consider the two-dimensional plate of Fig.
8.24 as it is being accelerated downward (causing an upwash w). The resulting
force per unit length Ax will be

AL 3 (b2 GJ‘b’z (y )2 8[ 2n]

252 Ody=p—| bwy/l-(2=) dy=p—|wb*>

A Pal,, 20 =pPg ), 0" b2) PP 4
(8.100)

This result can be viewed as the ‘“added mass” of the fluid that is being
accelerated by the accelerating plate. Following Newton’s second law the force

T w=Q_a(x) FIGURE 8.23
Schematic description of the crossflow streamlines.
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Direction
of plate
acceleration

FIGURE 8.4
Two-dimensional flow resulting
from the downward motion of a
two-dimensional flat plate.

due to accelerating fluid with added mass m’ by a massless plate is

£=d(m'w)
Ax dt

and by comparing this formulation with Eq. (8.100) the added mass becomes

[ 2'7_r
m' = pb*% (8.101)

which is equal to the mass of a fluid cylinder with a diameter of b.

Now, after establishing the added-mass approach, it is possible to follow
the method of R. T. Jones for the slender pointed wing. The lift on the
segment of the slender wing that is passing across the plane of observation in
Fig. 8.22 will be due to accelerating the added mass of the fluid:

£,=d(m'w)_d(m’w)d_x_ 2 dm'’
AT d o dx a2y

da(x) . ..
where w(x) = Q.a(x), d,(r ) is negligible, and dx/dt = Q.. Substituting the

added mass m' from Eq. (8.101) yields

AL ., . mdb(x)
A = PQ=a() Z% = pQLa(x) :2_1 b(x)

db(x)

dx
Thls equati‘on is equivalent to Eq. (8.89), and again states that there will be no
lift if b(x) is constant with x.

' To obtain the lift, drag, and pitching moment, this equation is integrated,
to yield the same results as presented in the previous section.

(8.102)
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8.2.4 Conclusions from Slender Wing Theory

The slender-wing solution presented here is based on the small-disturbance
assumption, which automatically restricts the range of wing angle of attack.
But in this particular case of slender wings, the incidence range is more limited
than for high aspect ratio lifting wings because of flow separation along the
leading edges. This effect will be discussed in Chapter 14, and in general, these
leading-edge separated flow patterns will begin at angles of attack of 5-10°
(depending on leading-edge radius).

The main importance of this slender wing theory is that it provides a
three-dimensional solution for the limiting case of very small aspect ratio
wings. These results can serve as test cases for more complex panel codes,
within the limit of small incidence angles.

The slenderness assumption, where one coordinate is larger than the
other two, allowed the local treatment of the two-dimensional crossflow. This
logic can be carried over to more advanced methods and also for treating
supersonic potential flows. This becomes clear when examining Eq. (4.73),
where by omitting the x-derivatives, the Mach number dependency is lost too.

The wake influence in this analysis was assumed to be small (negligible),
which is, again, a good test case for more advanced panel codes.

8.3 SLENDER BODY THEORY

As a final example of classical small-disturbance theories, consider the flow
past a slender body of revolution at a small angle of attack «, as shown in Fig.
8.25. It is convenient to use the cylindrical coordinates x, r, € and then the
surface of the slender body of revolution is given as

F=r—R(x)=0 (8.103)

FIGURE 8.25
Nomenclature used for slender
body theory.
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If the length of the body is /, slenderness means that the ratio of body radiug

R(x) to length is small and for small disturbances, the angle of attack « is smal|
as well:

dR
R—(I-{z«l a1 j‘i—xl,«l (8.104)

Laplace’s equation for the perturbation potential (in cylindrical coordinates) ig
given by Eq. (1.33) as

Fo o 150 15

V=t e tag = (8109

where r = Vy? + Z2.
In this coordinate system the free stream velocity is
Q.. = U.e, + W.e, = Q.[cos a e, + sin a(sin O e, + cos § €9)]
~ Q.[e, + a(sin O e, + cos O e,)] (8. 106)

Following the method of Section 4.2, the zero normal velocity component
boundary condition on the body surface is V®* - VF =0, which yields

P . Pl dR(x)
> + Q.asin [ o + Qm] P 0 forr=R(x) (8.107)
The small-disturbance version of this boundary condition is obtained after
neglecting the smaller terms (according to Eq. 8.104):

% (x, R, 6) = Q.R'(x) — Q. sin 6 (8.108)

where R'(x) =dR(x)/dx and it is noted that the boundary condition has not
been transferred to the body axis. The reason for this is that the velocity
components of this flow are singular at the axis and the application of the
boundary condition must be performed with care.

At this point it can be seen that the small-disturbance flow past a slender
body of revolution at angle of attack can be replaced by two component flows,

the axisymmetric flow past the body at zero angle of attack with body
boundary condition

% (x, R, 6) = Q.R'(x) (8.108a)

and the flow normal to the body axis with free stream speed Q..a and body
boundary condition

P
> x, R, 0)=—Q.asin 0 (8.108b)

In the next two sections these two linear subproblems will be formulated and
the complete solution is their sum.
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8.3.1 Axisymmetric Longitudinal Flow Past a
Slender Body of Revolution

The axisymmetric version of Laplace’s equation (Eq. (8.105)) is

Fo Fo 150 _, (8.109)
ax* or* ror

and the body boundary condition is given by Eq. (8.108a).hTilxe SOtl;lltl(t))lcl) dlS
modeled by a distribution of sources of strength o(x) per lengt. along h 61:1 thz
axis on the strip 0=x =1, z=0 (Fig. 8.2§) and t!le Prol?lem.ls essentia 13]1
axisymmetric version of the two-dimensmnal‘ thin-airfoil th1cknes§ pcxi'g et:n
The perturbation velocity potential and v?loc1ty compopents for this ;str; : un
tion are obtained by integrating the equations of the point source (see Sectio

3.4) along the x axis:
1 (' o(xo) dxo

N oo
3 1 [ o(xgrdx
q.(r,x)= ar “an L [(x — xZ)Z + :2]3/2 (8.111)
30 1 ("o(xe)(x —xo) dxo
qx(r, x)= EX_ = EE A [(x — xO)z + r2]3/2 @8 112)

To satisfy the body boundary condition (Eq. (8.108a)), which states that
the flow is tangent to the surface,

4 _ g atr=R

0. R'(x)
we use the slenderness arguments developed in slepder wing theory altlld
consider a mass balance in the crossflow plane (see Fig. 8.27). .Surroutrlld ;x e
body axis with a circle of radius r and the volume flow (per unit length, Ax)
through this circle is equal to the source strength

o(x) = 27rg, (8.113)
A
r o
dR(x) _ or
e Ow
/TN~ -
- -~ a(x) R(x) o
2=, Cooocos o-o0-00see eI x
FIGURE 8.26

Source distribution along the x axis.
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3 /

FIGURE 8.27
Cross-sectional ~ view of the source
distribution.

Source

If Eq. (8.113) is evaluated at » = R and the boundary condition of Eq. (8.108a)

is used, the source strength is found to be

dS(x)
dx

o(x) =2aRQ.. % =0

where S(x) is the body cross-sectional area. The potential and velocity
components are then found by substituting o(x) into Eqs. (8.110-8.112),

—Q. ' 8'(x0) dxo
¥4 0 \/(x _x0)2+r2

_8P_Q0. (" S'(xordx
4r{r, x) = or 4w Jy [(x — xo)* + P77 (8.116)

ﬂ) _ &e ’S'(xo)(x — Xg) dx,
ox  4m o [(x — xo) + rP?

®(r, x) = (8.115)

qu(r, x) = (8.117)

8.3.2 Transverse Flow Past a Slender Body
of Revolution

The governing equation for the potential is Laplace’s equation (Eq. (8.105)),
ﬁ) Fo 1 0P 150

" o e TAse " (8.105)

and the body boundary condition is given by Eq. (8.108b),

b
5, (R 6)=—Q.asing (8.108b)

The two-dimensional flow (in the y-z plane) of this problem resembles the
flow past a cylinder, which was solved in Section 3.11. Therefore, the solution
to this problem is modeled by a distribution of doublets of strength u(x) per
length on the strip 0=<x =</, z =0. The doublet axes point in the negative z
direction opposing the stream. The velocity potential and velocity components

(8.114)
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y integration of the point elements (see Section 3.5) along the

are given b
body’s length.
1 (" plxo)r sin 8dxo (8.118)
(I)(r, 0, X) = Z; A [(x — x0)2 + r2]3/2
0 _ 1 [ plxo)sinOdro 3 p(xo)sin0r°dxg
. — - 2
4r, 0, x)=5"= 4nJ:) [(x —xo)> +P7P? 4w )y [(x —x0)° +77]
(8.119)
100 1 J'l p(x0) cos 6 dxo (8.120)
9001 %) =756 = 4y [ — xoP + PT”
30 -3 (' p(xo)(x — xo)r sin 6 dx, (8.121)

‘Ix(r, 0: X)___Ex—_:‘;; o [(x—x0)2+r2]5/2

To satisfy the body boundary co'ndi.tion, consider the flow i'nctlisrcrcoiis‘tl’igg
plane (as shown in Fig. 8.28). This is samp!y the ﬂqw past a circu y
and its radial velocity component from Section 3.11 is
p(x) sin 6
21 R¥(x)

Thus the boundary condition at r = R becomes

oP _H(i)iilg:—Q «a sin 6
o B O =5 Rk

Doublet

N

-y

FIGURE 8.28

Crossflow model using doub.le.
tion along the x axis and pointin
—z direction.

g in the

t distribu-
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and the doublet strength is found to be
u(x) =2xQ.aR*(x) =2Q.aS(x) (8.122)

For small values of r (including the body surface) the solution is the flow past

@(r, 6, x) = Q.aR? SinTB (8.123)
a.(r, 6, x) = —Q.aR? Sifze (8.124)
q46(r, 6, x) = Q,aR? Corsz o (8.125)
q.(r, 8, x)= %% =20Q.aRR’ g (8.126)

Note that since the doublet st i i
‘ rength is a function of x, the st i i
velocity component is unequal to zero. ’ reamise (axial)

8.3.3 Pressure and Force Information

Eggypsfrturbalti(t)p vejlocitt,y field for the flow at angle of attack past a slender
revolution is obtained by adding the results f; Secti
8.3.2. The velocity field will be eval holy surte for o
The uated on th
determination of the forces and pitching moment © body surface for the
For the axisymmetric problem of Secti :
1e ection 8.3.1, the i i
component is given by the boundary condition (Eq. (8.1082)) asr wl velociy

q,= Q=R'(x) (8.127)

The axial component of velocity can be determined by taking the limit of Eq

(8.117) as the radial i
¢ ) 1al coordinate approaches zero. Let us denote this component

o 9x =qxa (8.128)
It is given in Karamcheti' (p. 577) as
_ Q= r Q.
dxa o S"(x) lni + Efo $"(x0) In |x — x| dx, (8.1284)

The radial, tangential, and axial veloci
, tan , city components of the t
%oblem of Section 8.3.2.arc:, found by substituting r = R in Egqs. (8.122311;5‘1’;23;
e complete velocity distribution on the body surface is obtained by aadiné

the free-stream components from i
to et p Eq. (8.106) to the perturbation components

q(x, 7, 0)=(Q.+q,, Q.asin 0 +gq,, Q.a cos 6 + qe) (8.129)
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Substituting Eq. (8.129) into the pressure coefficient equation yields

2 2 2
([l [AS g‘; x (8.130)
It can be seen by an inspection of the velocity components that the
magnitude of the squares of the crossflow plane components is comparable to
the magnitude of the axial component itself and therefore the only term in the
pressure coefficient equation that can be neglected is g2/ Q%. The perturbation
components from Eqs. (8.124-8.126) are substituted into the modified Eq.

(8.130) and after some manipulation the pressure coefficient becomes

2

C,= —%—(R')Z—mze'sm 0 + a?(1 — 4 cos® 6) (8.131)
The force acting on the slender body is given by
! 27
F=—Jpnd =—[J pnR dBdx (8.132)
S 0 70

where dx is the slender-body approximation for the length element. The
slender-body approximation for the unit normal is

n=e,— R'e,=—R'e, +cos fe, + sin fe, (8.133)

and substituting this into Eq. (8.133) yields the force components in the three
coordinate directions:

{ 2n
E = j f R'Rp dO dx (8.134a)
0 0
l r2n
5= —J Rp cos 6d6 dx (8.134b)
0 70
1l r2n
z=—j f Rp sin 6d0 dx (8.134c)
0 70
The rate of change of the force components with respect to x is given by
dF. 2n
——’=—R'R[ do 8.135
I P (8.135a)
27
EI—F—y= —RJ p cos 8d0 (8.135b)
dx o
2
dE, = —RJ p sin 8d6 (8.135¢)
dx o

To use the pressure coefficient from Eq. (8.131) in Egs. (8.135) the pressure is
written as
1pQ%C, + pe (8.136)

p
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and after Eqs. (8.131) and (8.136) are substituted into Eqs. (8.135) and the
integration is performed, the axial rate of change of the force components
becomes

dF, .
dF,
—_90
(8.137b)
dF, /
= p0%as (8.137¢)

The side force distribution is zero and therefore the side force is also
zero. The normal force distribution is proportional to the angle of attack and
rate of change of cross-sectional area, a result obtained by Munk (see Sears®*),
An integration in x shows clearly that the normal force on the body is zero if
the body’s ends are pointed. A similar result can be obtained for the axial
force, which is also zero if the body’s ends are pointed (see Ward®?).

The moment about the origin is given by

l 27
M= —f I rxXnpR dOdx (8.138)
0 J0

where the position vector r is seen to be
r=xe,+Re, =xe,+Rcosfe,+Rsinfe, (8.139)

The components of the moment about the x and z axes are zero from
symmetry considerations and the pitching moment about the y axis is

l 2

M, = 1p02 f (x + RR") sin 6 RC, d6 dx (8.140)

0 70

With the use of Eq. (8.135¢) the pitching moment can be written as
! dF,
My=—f (x + RR") 2= gy (8.141)
o dx

The second term in the integrand is neglected as being second order and after
an integration by parts, the pitching moment becomes

] !
M, = —inaff xS'dx = —ina/[xS 6~ f de] =pQiaV (8.142)

0 0

where V is the body volume

8.3.4 Conclusions from Slender Body Theory

The above results for the aerodynamic forces acting on slender bodies show
that for pointed bodies there is no lift and no drag force, but there is an
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- aerodynamic pitching moment. This important result is very useful when

checking the accuracy of numerical methods that calculate the l'ift 'c‘md drag by
integrating the surface pressure over the body (and may regult in lift and drag
that are different from zero). Lift and drag forces are posgble only when the
base is not pointed, and a base pressure exists that is dlfferer}t from that
predicted by potential flow theory (e.g., due to flow separations). Some
methods for the treatment of bodies with blunt bases are presented by

Nielsen.®

8.4 FAR FIELD CALCULATION OF
INDUCED DRAG

It is possible to compute the forces acting on a body or wing by applying Fhe
integral form of the momentum equation (Eq. (1.19)). For example, t.he wing
shown in Fig. 8.29 is surrounded by a large control volume, and for an inviscid,
steady-state flow without body forces, Eq. (1.19) reduces to

f pq(q-m)dS=F — J pndS (8.143)

where the second term in the right-hand side is the integral of the pressures. A

ZA

Wing

Spanwise vortex

strength Trefftz plane Sy

(x = const.)

FIGURE 8.29
Far-field control volume used for momentum balance.
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coordinate system is selected such that the x axis is parallel to the free-st

velocity U. and the velocity vector, includi
® s uding th .
becomes g the perturbation (u,

ream,
v, W)

q9=(Us+u, v, w)
If the x component of the force (drag) is to be computed then Eq. (8 143i

becomes

p=-|
sp(U,,+u)[(Um+u)dydz+vdxdz+wdxdy]—fpdydz
S

The pressures are found by using Bernoulli’s equation:

—p =Py _P
P — P 2Um 2[(Um,+u)2~|~vz+w2]=—,ouUm,—g(u2+v2+w2)

Substituting this result into the drag integral yields

D=-
pfsUm(Uw+u)dydz—pL(Uw+u)(udydz+vdxdz+wdxdy)

o
+ U,d L 2 2 2
PLu ydz+2L(u +v +w)dydz (8.144)

Note that the second integral will vanish due to the continuj i

perturbat‘ion, and the first and the third will cancel gz:u;\tl);:q?fag]oen cfgrrlttrhi
volume is large then the perturbation velocity components will vanis(L
gverywhere but on the wake. If the flow is inviscid, then at this plane S, shown
in Fig. 8.30 (_called the Trefftz plane) the wake is parallel to the lozal free
stream 2and gvﬂl result in velocity components only in the y and z directions
(thus u” < v?, w?). Therefore, the drag can be obtained by integrating the v

Lifting line

Trefftz plane

FIGURE 8.30

Trefftz plane used for the calculation
of induced drag.
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and w components on this plane only:

-5 [ e ewaa=t [ [(5)+(3)]
== +w)dydz == — | +|—=) |dyd .
ZL,(U w?) dy dz 2 L 1% 5,) |ddz (8.145)
where @ is the perturbation velocity potential. Use of the divergence theorem
to transfer the surface integral into a line integral (similar to Eq. (1.20)) results

n ab\2 (3D\: (PP FO L
L,[( ay) * (82) +®(8y2 M 822)] dy dz = qu) on d

The third term in the first integral is canceled since in the two-dimensional
Trefftz plane V?® = 0 and the integration is now limited to a path surrounding
the wake (where a potential jump exists). If the wake is modeled by a vortex
(or doublet) distribution parallel to the x axis, as in Fig. 8.30, the formulation
of Section 3.14 for continuous singularity distributions can be used. Because of
the symmetry of the induced velocity above and under the vortex sheet this
integral can be reduced to a single spanwise line integral:

p b, /2

P b2
D=-= Adwdy = -~ I I(y)wdy (8.146)
2 2),p

—bu/2
the minus sign is a result of the 8®/3n direction pointing inside the circle of
integration and b,, is the local wake span. In Eq. (8.146) a “horse shoe”
vortex structure is assumed for the lifting wing, but the wake span is allowed to
be different from the wing’s span (e.g., due to self-induced wake

displacement).
Following the same methodology, the lift force can be derived as

by /2 b,,/2
L=pU, f A® dy = pU, I I(y)dy (8.147)
—b,,/2 -b,/2

The above drag formula may be useful in measuring the accuracy of data
that is obtained by numerical integration of the local pressures. As an example
for the use of Eq. (8.146), consider the elliptic lifting-line model of Section 8.1.
The downwash at the lifting line (point A in Fig. 8.30) due to the elliptic load

distribution is constant (Eq. (8.24)):
Lo
2b

This was a result observed on the lifting line due to the semi-infinite trailing
vortex lines. However, far downstream at a point B (in Fig. 8.30) the
downwash is twice as much since to an observer at this point the vortex sheet
seems to be infinite in both directions. Using the elliptic distribution I'(y) of
Eq. (8.21) and by substituting w; into Eq. (8.146) the drag force becomes

w;=—Qu; =

b/2
2

p b T
= —=2w I d =- i_rmax=_ l—‘max
ks (y)dy = —pwi— gP
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which is exactly the same result as in Eq. (8.27). Also, in this case a rigid wake

model is used and the wake span b,, was assumed to be equal to the wing
span b.
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PROBLEMS

8.1. Consider the Fourier coefficients for the lifting-line circulation in Eq. (8.42). Show
that for wing loading symmetrical about the midspan the even coefficients are zero
and for antisymmetrical loading the odd coefficients are zero.

8.2. The governing equation for the Fourier coefficients in Problem 8.1 is Eq. (8.58).
One method for the numerica! solution of this equation is to set all coefficients
equal to zero for n greater than some value, say N, and to evaluate the equation
for N values of 6. The N linear equations for the unknown coefficients can then be
solved using standard techniques. This is called the collocation method. Use the
collocation method to find the Fourier coefficients for a flat rectangular wing of
aspect ratio 6 for N =3, 5, 7 (two-, three-, and four-term expansions). Calculate
the lift and induced drag coefficients for these three cases.

8.3. Find the vortex distribution for slender-wing theory by the direct integration of
Eq. (8.72) with the use of the results of Section 7.1.

8.4. Consider the flow past a flat elliptic planform wing at angle of attack a. A flap
whose extent covers the center half of the wing span is deflected such that the
zero-lift angle distribution along the span is given by

b b
ao=—f ‘Z<y<2

where B is constant.

Find the wing lift coefficient and circulation distribution and plot the
circulation distribution to study its behavior at the tip of the flap. Use lifting-line
theory.

8.5. Find the ratio of wing pitching moment (about the leading edge) coefficient to
wing lift coefficient for a large aspect ratio flat plate wing with (a) elliptic
planform, (b) rectangular planform. Your answer should be a number.

CHAPTER

NUMERICAL
PANEL
METHOD

In the previous chapters the solution to the Potential ﬂow.problem was
obtained by analytical techniques. These techmqges (qxcep} in .Chap_ter 6)
were applicable only after some major geometrical simplifications in the
boundary conditions were made. In most of these case‘s.the geometry was
approximated by flat, zero-thickness surfaces and foF adgmonal simplicity the
boundary conditions were transferred, too, to these simplified surfaces (e.g., at
’ O)’i'he application of numerical techniques allows the treatment of more
realistic geometries, and the fulfillment of the boundary COl'ldl‘tIOIlS on.the
actual surface. In this chapter the methodology of some numerical solutions
will be examined and applied to various problems. The methods prc.:sen.ted
here are based on the surface distribution of singularity element§, which is a
logical extension of the analytical methods presented in the earlier _chapte.rs.
Since the solution is now reduced to finding the strength of the singularity
elements distributed on the body’s surface this approach seems to be more
economical, from the computational point of view, than methods that solve for
the flowfield in the whole fluid volume (e.g., finite-difference methods). Of
course this comparison holds for inviscid incompressible ﬂow§ only, whereas
numerical methods such as finite-difference methods were baswal}y developed
to solve the more complex flowfields where compressibility and viscous effects

are not negligible.
237
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9.1 BASIC FORMULATION

Consider a body with known boundaries Sz, submerged in a potential flow, as
shown in Fig. 9.1. The flow of interest is in the outer region V where the
incompressible, irrotational continuity equation, in the body’s frame of
reference, in terms of the total potential ®* is

Vo* =0 (9.1)

Following Green’s identity, as presented in Section 3.2, the general
solution to Eq. (9.1) can be constructed by a sum of source ¢ and doublet u
distributions placed on the boundary Sz (Eq. (3.13)):

1 1 1
wcn =k [ [ol)-pm-v()]asse. o
x,y,2) e ar un - as+ o 9.2
Here the vector m points in the direction of the potential jump u which is
normal to S and positive outside of V' (Fig. 9.1), and ®,, is the free-stream
potential:

S, .=Ux+V.y+W.z 9.3)

This formulation does not uniquely describe a solution since a large
number of source and doublet distributions will satisfy a given set of boundary
conditions (as discussed in Chapter 3). Therefore, an arbitrary choice has to be
made in order to select the desirable combination of such singularity elements.
It is clear from the previous examples (in Chapters 4-8), that for simulating
the effect of thickness, source elements can be used, whereas for lifting
problems, antisymmetric terms such as the doublet (or vortex) can be used. To
uniquely define the solution of this problem, first the boundary conditions of
zero flow normal to the surface must be applied. In the general case of
three-dimensional flows, specifying the boundary conditions will not immedi-
ately yield a unique solution because of two problems. First, an arbitrary
decision has to be made in regard to the “right” combination of source and
doublet distributions. Secondly, some physical considerations need to be
introduced in order to fix the amount of circulation around the surface Sg.

Ss

Body
coordinates

Wake

FIGURE 9.1
Potential flow over a closed body.
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These considerations deal mainly with the modeling of the wakes and fixing the
wake shedding lines and their initial orientation and geometry. (This is the
three-dimensional equivalent of a two-dimensional Kutta condition.) However,
based on the previous examples, it is likely that the wake will be modeled by
thin doublet or vortex sheets (Fig. 9.1) and therefore Eq. (9.2) can be
rewritten as

1 1 1 1
O*(x, y, =——J' -V(—)dS——f (—)dS+<I>w
(x Y Z) 4r body+wake #n r 4 bodya r
(9.2q)

9.2 THE BOUNDARY CONDITIONS

The boundary condition for Eq. (9.1) can directly specify a zero normal
velocity component 3®*/3n = 0 on the surface Sg, in which case this “direct”
formulation is called the Neumann problem. 1t is possible to specify ®* on the
boundary, so that indirectly the zero normal flow condition will be met, and
this “indirect” formulation is called the Dirichlet problem. Of course, a
combination of the above boundary conditions is possible, too, and this is
called a mixed boundary condition problem.

An additional approach would be to search for a singularity distribution
that creates enclosed streamlines, equivalent to the geometry of the surface Sg.
This method is useful in two dimensions, where the stream function ¥ is well
defined (and hence the streamlines W = const. can be easily derived as in
Sections 3.10, 3.11), but for complex, three-dimensional geometries the
implementation of this method is difficult and will not be dealt with here.

Neumann Boundary Condition

In this case it is required that 5®*/3n will be specified on the solid boundary
Sg, €.g.:

V(@ +®.)-n=0 (9.4)

where @ is the perturbation potential consisting of the two integral terms in
Eq. (9.2a). From this point and on, for convenience, the velocity potential will
be split such that @, is the free-stream velocity potential (Eq. 9.3) relative to
the origin of the coordinates attached to the surface S;. The second boundary
condition (at the distant, outer boundaries of the flow) requires that the flow
disturbance, due to the body’s motion through the fluid, should diminish far
from the body,

lim V& =0 9.5)

r—»c0

where r=(x, y, z). This condition is automatically met by all the singular
solutions considered here. To satisfy the boundary condition in Eq. (9.4)
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directly, we use the velocity field due to the singularity distribution of Eq

(9.2):

1 3 /1
L CTC R
4n body +wake H on\r as ¥ 4 J;)ody 0V<;) as + V¢m
(9.6)
If the singularity distribution stren
. ' gths o and p are known, then E
describes the velocity field everywhere (of course, special treatment isqriec(:ifc}

when the velocity is evaluated on the surfac ituti
e Sz). Sub .
the boundary condition in Eq. (9.4) results in:B) ubstitution of Eq. (9.6) into

= I G S B
4n body+wake on\r B EZ J;ody 0V<;> ds + V®°°} ‘n=0 (9.7)

or e",I(;l:;s ;git:::ti(()): ;; the :)fasis gor many numerical solutions and should hold
. ¢ surface Sp. For example, a certain numb i
((:)zﬂ?? coll?c}tzzuorzgpo)znts) can be selected on the surface S, Theér S(fu!r):il:rt;
1tion of Eq. (9.7) is then specified at each of thes ints i
. & € points 1n t
il:i]e“g]f::n smg:lant(ngs at all the collocation points. This Ia)xpproach ::lr:;:sf :ll::
equation (Eq. (9.7)) to a set of algebrai i
Chapter 3, the solution at this point i inique. and the combimen i1
, nt is not inati
sources and doublets must be spgciﬁed. ot unique, and the combination of
Note that if for an enclosed bounda
1 enclc ry (e.g., Sz) 0®*/3n =0, as requi
by'tlllle bgundary gondltlc'n.) in Eq. (9.4), then the potential inside theq‘tl)gzd
(without internal singularities) will not change (Lamb,”! p. 41): ’

* __
@} = const. (9.8)

VthCh. constant could be‘ selected also as zero. This observation is important
since it allows us to specify the boundary condition (Eq. (9.4)) in terms of the

potential inside Sy, which i . )
condition). s, Which is the Dirichlet problem (or Dirichlet boundary

Dirichlet Boundary Condition

N .

on t . . .
ote}:]fi :lugic'e, and placing the point (x, y, z) inside the surface Sp the inner
p i I terms of the surface singularity distributions is obtained:

1
Y T
4n body +wake # on\r as 4 J'body 0(;) ds + ®°° (9- 9)

Again, these integrals are sin

gain, gular when r—0 and near thi i i
gnnc:jpal value. must be evaluated. The zero flow normal t:)s trl,lzmstu:f}:::
oundary condition (Eq. (9.4)) is defined now using Eq. (9.8). Therefore, the
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condition V(® + ®..) -n =0, in terms of the velocity potential, becomes
®&F = (P + D..), = const.

or

1 3 (1) 1[ (1)

* -1 (N as-— 2) ds + ®.. = const.

®i(x ¥, 2) =30 L,dymkc” an\r 470 Jooay N1 cons
(9.10)

Equation (9.10) is the basis for methods utilizing the indirect boundary
conditions. However, even at this stage, there are many differences between
the various methods of solution, related to setting the value of the inner
potential ®; (in addition to the differences in the source/doublet combina-
tions). For example, by setting ® =(® + ®.); =0, Eq. (9.10) can be solved
on the surface Sp but the resulting singularity distribution will include ®.. and
the strength will be large.

Other values for the inner potential can be specified too (not necessarily
constant) and when the inner potential is set to P = (P + D..); = P, (Which is
equivalent to specifying Eq. (9.10) for the perturbation only in a ““ground-fixed
frame” where @, = 0) then Eq. (9.10) reduces to a simpler form:

1 g (1 1 1
— —\- dS—-—-I (—)dS=0 9.11
4n fbody+wake # on (r) 4 body ¢ r ( )

To justify the above, consider the Neumann boundary condition (Eq. (9.4))
8®*/9n = 0, which is equivalent to 3®/6n = —n - Q... Recall that the value for
the discontinuity in the normal derivative of the velocity potential as given by
Eq. (3.12) is

_9P* 37 P 9%,

on on dn On

and since ®, =0 then also 3®,/9n =0 on Sz. Consequently, for Eq. (9.11) to
be valid, the source strength is required to be

o=n-Q. (9.12)

where n points into the body as in Fig. 9.1.
To define this problem uniquely, the wake doublet distribution should be

known or related to the unknown doublets on Sp (Kutta condition). To
proceed with the solution, Sp is divided into discrete elements and at each of
these elements Eq. (9.10) (or Eq. (9.11)) is evaluated. This results in a set of
algebraic equations for the unknown u distribution. Note that when evaluating
the integrals at a point P on the element (r— 0) then ®(P)=Fu/2 (see
Section 3.14).

In this formulation, when Eq. (9.12) is used, the zero normal flow
boundary condition information is contained in the source terms and for very
thin surfaces the integral may be ill-conditioned and will cause numerical

instabilities.
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9.3 PHYSICAL CONSIDERATIONS

The above mathematical formulation, even after selecting a desirable com.
bination of sources and doublets, and after fulfilling the boundary conditions
on the surface S, is not unique. Previous examples showed that for describing
the flow over thick bodies without lift the source distribution was sufficient, but
for the lifting cases the amount of the circulation was not uniquely defined.
Before proceeding further, (and using the information developed in Chapter
8), let us examine the case of a lifting wing, as viewed from a large distance
(Fig. 9.2). For simplicity, the bound vortex is represented by a concentrated
vortex line with the strength I' (=T, =T)). According to the Helmholtz

theorems (Section 2.9) a vortex line cannot start in a fluid and following Eq.
(4.64)

Yy

oy ox 013

which for the simple case of Fig. 9.2 implies that the problem is modeled by

one, constant strength, closed vortex line. Also, the amount of the bound
circulation is

ar, _or

2
F=j q-dl
1

where point 1 lies under and point 2 is above the (very) thin wake. These two
arguments clearly demonstrate that for the three-dimensional lifting problem
there is a need to model a wake, since the bound vorticity needs to be
continued beyond the wing. Also, as shown in Fig. 9.2, in order for the wing to
have circulation T at a spanwise location (see Section 3.14), a discontinuity in
the velocity potential near the trailing edge must exist:

¢2_¢1=r

where @, is under and @, is above the wake. Now we are in a position where
the additional physical conditions, required for a unique solution, can be

Wing

d’l
at lower point FIGURE 9.2
Vorticity system created by a finite wing

in steady forward flight.
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established in relation to a wake model. This model has to specify two
additional conditions:

1. To set the wake strength at the trailing edge
2. To set its shape and location.

WAKE STRENGTH. The simplest solution to this problem is to apply the
two-dimensional Kutta condition along the three-dimensional trailing edge (as

n in Fig. 9.3) such that

i le, in the two-dimensional case du(x)/ox = —y(x) (as. in
gznci?(;nfgflf)xig::pabove condition can be rewritten for the trailing edge 1.111'1e,
such that p is constant in the wake (uw) and equals the value at the trailing
edge (4re)

Uy g = hw = const.

o py =t — pw =0 9.15)
where py and u; are the corresponding upper and lower surface doublet
strengths at the trailing edge, as shown in Fig. 9.3. As an example, the
specification of this Kutta condition in terms of constant-st'rength doqb}et
elements (or vortex rings) is shown in Fig. 9.4 (pgre for convenience a positive
doublet points into the wing). At the wing’s trailing edge, tpe trailing segment
of the upper doublet will have a strength of —I‘U,‘ the leading vortex segment
of the lower surface (which is now inverted) will be +I'; and the leadn}g
segment of the wake vortex is +I'w. Thus, the strength of the wake panel in
terms of the local circulation I is again

_FU + FL + Fw = 0
or exactly as in Eq. (9.15),
Iy=Cy-T, (9.16)

In certain situations also the shape of the trailing edge is impott?mt. For
example, Fig. 9.5a shows a situation where the flow leaves the trailing edge

— 9K 0

YTE = 95 T

_i Hw
"
FIGURE 9.3

Implementation of the Kutta condition when using surface doublet distribution.
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Positive direction of I”

FIGURE 9.4
Implementation of the Kutta condition when using vortex ring elements.

§moothly and Parallel to tbe cusped trailing edge. In such situations this point
is I;Ot ll]1ecessar11y a st'a.gnatlon point and if the velocity formulation is used then
only the g, =0 condition can be used. In the case that the trailing edge has a

finite angle (Fig. 9.5b), then in orde i
i . 9.5b), r to have i i
point the condition g, = 0 can also be used. * continuous veloclty ac this

IV:(’)?I;& SS::PEd 'Itn‘ twomdimensions, the trailing vortex segment of the wake is
and 1t is sufficient to specify the location of th ili

itis s e trailing edge where

the Kutta condition is met. In three dimensions, the wake inﬂuincegis more

T n
l Wake
q,=0

(a)

Yy~

Wake
qn =
g =0

(b)
FIGURE 9.5

Possible conditions that can be applied at (a) cusp and (b) finite angle trailing edges
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dominant and its geometry clearly affects the solution. To distinguish between
the models for bound circulation (which generate the lift) and the circulation
shed into the wake, it is logical to assume that the wake should not produce
lift—since it is not a solid surface. As an example, let’s recall the formulation
for the force AF generated by a vortex sheet with vorticity y. The Kutta—
Joukowski theorem for lift (Section 3.11) states that

For a three-dimensional case AF =0 only if the local flow is parallel to y (we
assume ¥ #0). So the condition for the wake geometry is

qXyw=0 (9.18)
or the vorticity vector is parallel to the local velocity vector
Ywilq (9.184)

An equivalent representation of the wake by a thin doublet sheet is obtained
by noting that yw = —Vuw (this will be demonstrated in Chapter 10). If no
force is produced by this lifting surface then Eq. (9.18) becomes

gXVuy =0 9.19)
So the condition for the wake panels, in terms of doublets, is
Hw = const. (9.19q)

and the boundaries of these elements (which are really the vortex lines) should
be parallel to the local streamlines, as in Eq. (9.18a). This condition (Eq.
(9.18a)) is difficult to satisfy exactly since the wake location is not known in
advance. In most cases it is sufficient to assume that the wake leaves the
trailing edge at a median angle 81 /2, as shown in Figs. 9.3 and 9.4, whereas

¢- q
—_—
Wake a

Wake geometry C. Cp

a 1.40 0.50

b 1.17 0.24

c 1.22 0.33
FIGURE 9.6

Effect of prescribed wake geometry on the aerodynamics of an R = 1.5 wing.
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for portions of the wake far from the trailing edge additional effort is required
in order to satisfy the condition of Eq. (9.18)

As an example of the dependence of the solution on the wake initia]
geometry, the results for a cambered rectangular wing of aspect ratio 1.5 are
shown in Fig. 9.6. The solution was obtained by a first-order panel method
(VSAERO®?) with 600 panels per semispan and the corresponding lift and
drag coefficents are tabulated in the inset to the figure (incidentally, case c jg
the closest to experimental results).

9.4 REDUCTION OF THE PROBLEM TO
A SET OF LINEAR ALGEBRAIC
EQUATIONS

At this point it is assumed that the problem is unique and that a combination
of source/doublet distributions has been selected along with a wake model and
the Kutta condition. For the following example @} = ®,_, along with Eq. (9.12)
for the source strength will be used and a constant-strength rectilinear panel is
assumed (this approach is widely used in many panel codes such as in Ref.
9.2). The body (see Fig. 9.7) is now divided into N surface panels, and into Ny,
wake panels. The boundary condition (either Neumann or Dirichlet) will be
specified at each of these elements at a “collocation point” (which for the
Dirichlet boundary condition must be specified inside the body where
®'=d,, e.g., at a point under the center of the panel). In most cases,

Collocation points, P

Surface panel

FIGURE 9.7
Approximation of the body surface by panel elements.
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i ithout moving it inside the body.
h, the point may be left on the surface wit vi
gl()l:gwritingp for example, the Dirichlet boundar){ condition for each of the N
c(zlllocation points, Eq. (9.11) will have the following form:

Ny 1 1

ii ,,m-v<1)ds+2— un-V(;)dS
=1 4 body—panel r =1 4n 'wake-panel

k= v

k=1 4r J'body—pancl

a(%) ds=0 (9.20)

That is for each collocation point P (shown in Fig. 9.7) the ?hmrflattlo:lagi It,h,:
infiuences of all k body panels and / wake panels is needed. The integ tion
limited now to each individual panel element, and for a unit smtg ! caz
element (o or u) it depends on the pgnei:’s ge(?mettl(')y t(;lrilly;:;ll‘?:l :tlitoefraa::)d an

alytically or numerically, prior . n, ,
Z)e(arl:leprlf:r?:;da acI:)nZtant-s);rength u element shown in Flg‘. 9.}8) Fhe influence of
panel k (defined by the four corners 1, 2, 3, and 4) at point P is

1 J’ 2 (1> dS|e=Cy 9.21)
4 1,2,3,4 on\r
and for a constant strength o element
a4 )i 234 \1

zA

Collocation point
under panel

FIGURE 9.8
Influence of panel k on point P.
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These integrals are a function of the points 1,2, 3, 4 and P and an “influence
computing routine” can be schematically defined as

Xp, Yp) Zp (922)
X1, Y1 24 influence
, Av, Aw
%2, Y2 Z2 | 51 coefficient | = (Au AD >
X3, ¥3, 23 calculation F
X45 Yas 24
u

Of course, in this case A®, = C,. After computing the influence of each panel
on each other panel Eq. (9.20) for each point P inside the body becomes

Nw N .
g‘, Catte + 2, Cipyt + > By, =0 for each internal point P (9.23)
k=1 =1 k=1

This equation is the numerical equivalent of. the boundary condition. If
the strengths of the sources are selected accordlng to Eq. (9.12) then the
coefficients B,, which are computed in a manner similar to Eq. (9.22), are
known and can be moved to the right-hand side of the equation. Also, by using
the Kutta condition, the wake doublets can be expressed in terms of the
unknown surface doublets u,. For example, in Fig. ?.9 two of the trailing edge
(T.E.) doublets p,, p, (here r, s, and ¢ are some arbitrary counters) are related

to the corresponding wake doublet g, by Eq. (9.15),
Me = Py — s
and consequently the influence of the wake element becomes
Cute = Ciltr — 4s)

This algebraic relation can be substituted into the C, coefficients of the
unknown surface doublets such that

A, =C, if panel is not at T.E.
A, =CxC, if panel is at T.E.

Trailing edge

FIGURE 9.9
Relation between trailing edge up-
= per and lower panel doublet stren-
: - C ; 2‘ gth and the corresponding wake
A:= C; - C,' doublet strength. .
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where the + sign depends on whether the panel is at the upper or the lower
side of the trailing edge (Fig. 9.9). Consequently, for each collocation point P,
a linear algebraic equation containing N unknown singularity variables u, can

be derived:
N

N
> Ay =—2, Bio, (9.24)

k=1 k=1

Evaluating Eq. (9.24) at each of the N collocation points (j = 1— N) results in
N equations with the N unknown y,, in the following form:

ay1, 12, - - -, Q)N 231 by, bia, ..., bin g
a1, 4, .. -, 2N a2} _ b1, by ..., boy 02 (9.25)
ant, N2, - - - 5 ANN Un byi, baa, oo, ban Oy

Note that for evaluating the influence of the panel on itself (a,, bix) the
integral of the influence coefficients may be singular and its principal value
must be evaluated. In this formulation the unknown u distribution is small
(perturbation only) and the numerical solution is believed to be more stable.’?
The right-hand side of Eq. (9.25) can be computed since the value of o, is
known and Eq. (9.25) can be rewritten as

411,812, - - - s N 123} RHSI
az,42n,...,4 RHS
hE Sl [ S e (9.250)
aNl) aNZ) LR ] aNN HN RHSN

where the values of y, can be computed by solving this full-matrix equation.

Also, the relation 0= Q.- n of Eq. (9.12) contains the information on
the zero normal flow condition for the thickness problem and this formulation
will be singular for surfaces approaching zero thickness.

The derivation of the influence coefficient integrals depends on the shape
of the panel element (e.g., planar, curved, etc.), and on the singularity
distribution (constant or linearly varying strength, etc.) and some examples
will be presented in the following chapters.

9.5 AERODYNAMIC LOADS

Once Eq. (9.25) is solved the unknown singularity values are obtained (u in
this example). The velocity components are evaluated now in terms of the
panel local coordinates (/, m, n) shown in Fig. 9.10. The two tangential
perturbation velocity components are

@=— Gn=- (9.26)

where the differentiation is done numerically using the values on the neighbor
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n

FIGURE 9.10

Panel local coordinate system for evaluating the tangen-
tial velocity components.

pa_nels. The normal component of the velocity is obtained from the source (in
this example):

4.=—0 (9.27)

The total velocity in the local (/, m, n) direction of panel k is
Qk = (Qw,) Qm,,,) Qw,,)k + (qb qu qn)k (928)

and of course tl'1e normal velocity component on a solid boundary is zero. The
pressure coefficient can now be computed for each panel using Eq. (4.53):

2

C=1- H (9.29)

The contribution of this element to the nondimensional fluid dynamic
loads is normal to the panel surface and is

AF,
ZPQDOS

wher(? A .is a reference area. In terms of the pressure coefficient the panel
contribution to the fluid dynamic load becomes

C,, AS,
5 (9.30)

The individual contributions of the panel elements now can be summed up to
compute the desired aerodynamic forces and moments.
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9.6 PRELIMINARY CONSIDERATIONS,
PRIOR TO ESTABLISHING NUMERICAL
SOLUTIONS

Prior to establishing a numerical solution, some of the options need to be
considered:

Type of singularity that will be used

The options usually include sources, doublets and vortices or any combination
of the above.

Type of boundary conditions

Velocity or velocity-potential formulation may be used and the corresponding
Neumann, Dirichlet, or a combination of such boundary conditions must be
selected.

Wake models

How and where the Kutta condition will be specified. Also the shape of the
wake is controlled by Eq. (9.18a) and can be set by:

1. Programmer specified shape based on intuition or on flow visualizations.

2. Wake relaxation (where the wake points are moved with the local induced
velocity, e.g. in Ref. 9.2).

3. Time stepping (where the wake shape is developed by moving the wing
from an initial stand-still position, as will be presented in Chapter 13).

Method of discretizing surface and singularity
distributions:

1. Discretization of geometry. The placing of a simple panel element on an
arbitrary three-dimensional configuration is rather difficult. Figure 9.11
describes such a curved surface element with a local coordinate system x, y,
z. The shape of the surface can be described as z =f(x, y), but for
simplicity it is usually approximated by a piecewise polynomial approxima-
tion. For example, if a first-order polynomial is used then the average
surface can be described by

zZ=ap+byx+b,y
and for a second-order polynomial approximation

z=ag+bx + b,y +c x>+ coxy + 3 y?
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A

Quadrilateral
average plane

Actual surface

FIGURE 9.11
Nonplanar surface element and its quadrilateral approximation.

Contours of actual
geometry / h

FIGURE 9.12

Plossible difficulty in representing a three-dimensional surface by an array of quadrilateral surface
elements.
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FIGURE 9.13
Description of a nonplanar panel
element by a set of flat
subelements.

and so on (where the coefficients a, b, ¢ are constants). Figure 9.11 shows
the result of approximating a curved surface element by a first-order plane,
while Fig. 9.12 shows the possible consequence of representing a three-
dimensional curved surface by such quadrilateral elements. This repre-
sentation of the geometry may result in difficulties in specifying the
boundary conditions, since the “leakage” between the panels can weaken
the satisfaction of the zero flow through the boundaries requirement. One
possible solution is shown in Fig. 9.13 where the surface is described by five
flat subelements (as in the PANAIR code®?).

2. Discretization of singularity distribution. The strength of the surface
distribution of the singularity elements can be represented, too, in terms of
a piecewise polynomial approximation. For example, if the doublet
distribution on the element of Fig. 9.11 is constant such that

U = ay= const.

then this is a zero-order approximation of u. Similarly a first-order (or
linear) approximation is

Hu =a0+b1x+b2y
and a second-order (or parabolic) polynomial approximation is
p=ag+bix +b,y+cix’+cxy +c3y°

(Here the coefficients a, b, ¢, ... are constants, too, and of course are
different from the coefficients of the surface approximation).

Considerations of numerical efficiency

It is clear from the brief discussion on discretization that the computation of
the influence coefficients (e.g., Eq. (9.21)) is elaborate. Many methods divide
such calculations into near and far field where the far-field calculation treats
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the element as a point singularity (and not as a surface distribution). Typically,
the near field is assumed if the distance to a point P is less than 2.5-5 times the
larger diagonal of the panel. Because of the 1/r characteristics of the
singularity elements, when r— 0 the value of 1/r— ©; therefore, when the
point P is too close to the panel (or to a vortex line) cut-off distances are
usually applied. (Only the aerodynamic aspects of the numerics are discussed
here; other important aspects, e.g., the matrix solver efficiency, are not.)

9.7 STEPS TOWARD CONSTRUCTING A
NUMERICAL SOLUTION

When establishing a potential-flow numerical solution a sequence similar to the
following is recommended.

Selection of singularity element. The first and one of the most important
decisions is the type of singularity element or elements that will be used. This
includes the selection of source, doublet, or vortex representation and the
method of discretizing these distributions (zero-, first-, second-order, etc.).
Also, all of the questions raised in the previous section need to be answered
before the actual formulation of the solution can be constructed. Once these
decisions have been made an influence routine needs to be established, similar
to the model of Eq. (9.22). This influence computation is a direct function of
the element geometry and the resulting output of such a routine is the velocity
components and the potential (Au, Av, Aw, A®) induced by the element. In
general, the implementation of Eq. (9.22) represents the core of most
numerical solutions. Therefore, in the next chapter some of the more
frequently used singularity elements will be formulated.

Discretization of geometry (and grid generation). Once the basic solution
element is selected, the geometry of the problem has to be subdivided (or
discretized), such that it will consist of those basic solution elements. In this
grid-generating process, the elements’ corner points and collocation points are
defined. The collocation points are points where the boundary conditions, such
as the zero normal flow to a solid surface, will be enforced. Figure 9.14a shows
how the cambered thin airfoil at an angle of attack can be discretized by using
the lumped-vortex element. In this case the camberline is divided into five
panels and the location of the collocation points and of the vortex points are
shown in the figure. Similarly, the subdivision of a three-dimensional body into
planar surface elements (the collocation points are not shown but they are at
the center of the panel and may be slightly under the surface) is shown in Fig.
9.14b.

It is very important to realize that the grid does have an effect on the
solution. Typically, a good grid selection will converge to a certain solution
when the density is increased (within reason). Also a good grid selection
usually will require some preliminary understanding of the problem’s fluid
dynamics, as will be shown in some of the forthcoming examples.
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FIGURE 9.14
Discretization of the geometry of a thin airfoil by using the lumped-vortex element (a) and of a
three-dimensional body using constant-strength surface doublets and sources (b).

Influence coefficients. In this phase, for each of the elements, an algebraic
equation (based on the boundary condition) is derived at the collocation point.
To generate the coefficients in an automatic manner, a unit singularity strength
is assumed and the element influence routine is called at each of the
collocation points (by a DO loop).

Establish RHS. The right-hand side of the matrix equation is the known
portion of the free-stream velocity or the potential and requires mainly the
computation of geometric quantities (e.g., —Q..a).

Solve linear set of equations. The coefficients and the RHS of the algebraic
€quations were obtained in the previous steps and now the equations are
solved by standard matrix techniques. Here it is assumed that the reader is
familiar with such numerical solvers, which can be found in text books (e.g.,
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Definition of
geometry
| J
Computation of
influence coefficients
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Computation of
RHS (right-hand side)
A 4
S_olutiop of
matrix
Y
Pressures, velocity
components, loads, etc.

FIGURE 9.15
Typical flow chart for the numerical solution of the surface singularity

distribution problem.

Ref. 9.4 or as the solvers appearing in the student computer programs of
Appendix D).

Secondary computations: pressures, loads, velocity, etc. The solution of the
matrix equation results in the singularity strengths and the velocity field and
any secondary information can be computed now. The pressures will be
computed by the Bernoulli equation, and the loads and aerodynamic
coefficients by adding up the contributions of the elements. A typical flow
chart for such a computer program is shown in Fig. 9.15 where the sequence of
computations is close to the above-described methodology.

In the following example, the essence of the above steps will be clarified.

9.8 EXAMPLE: SOLUTION OF THIN
AIRFOIL WITH THE LUMPED-VORTEX
ELEMENT

As a first example for demonstrating the principle of numerical solutions, let’s
consider the solution for the symmetric, thin airfoil. Because the airfoil is thin,
no sources will be used, while the doublet distribution will be approximated
by two constant-strength doublet elements (u,, u,, pointing in the -z
direction). This element is equivalent to two concentrated vortices at the panel
edges (see Fig. 9.16). However, the geometry of the “lumped-vortex” model
was developed in Chapter 5, and by placing the vortex at the quarter chord
and the collocation point at the three-quarter chord point of the panel the
Kutta condition is automatically satisfied. Using this knowledge the equivalent
discrete vortex model (with only two elements) for the airfoil is shown in Fig.
9.17. Also for the thin lifting surface only the Neumann (velocity) boundary
condition can be used, because of the zero thickness of the airfoil. (Note that
the doublet representation in Fig. 9.16 clearly indicates the existence of a
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FIGURE 9.16
Constant-strength doublet element representation of the flat plate at an angle of attack (using two
doublet panels pointing in the —z direction).

starting vortex at a large distance behind the airfoil which is shown in Fig. 9.17
too.)

Selection of singularity element. For this very simple example the lumped-
vortex element is selected and its influence is derived in terms of the geometry
involved. Such an element is described in Fig. 9.184, and it consists of a
concentrated vortex at the panel quarter chord, a collocation point, and a
normal vector n at the three-quarter chord. It is important to remember that
this element is a simplification of the two-dimensional continuous solution and
therefore accounts for the Kutta condition at the trailing edge of the airfoil.

If the vortex of circulation I' of the element is at (x(, z,), then at an
arbitrary point P(x, z), according to Section 3.8, the velocity induced by this
element will be

u= L (z — z0)
T 27 (x — x0)? + (2 — zo)
—_F (x —xo)

T 27 (x — x0)? + (2 — 2)?

4

n T“ n n+r,
e =T 9-

Collocation
points

FIGURE 9.17
Equivalent discrete-vortex model for the flow over a flat plate at an angle of attack (using two
elements).
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FIGURE 9.18
Nomenclature and flow chart for the influence of a panel element at a point P.

and in a matrix form that is more useful for computations
(u)= r ( 0 l)(x—xo
w/ 2mr*\-1 0/\z- zo> ©.31)

rP=(x—xof’ +(z ~ z)

where

This can bq programmed as an influence coefficient subroutine in the manner
shown in Fig. 9.18b. Let us call this routine VOR2D and an algorithm based
on Eq. (9.31) will have the form

(4, w)=VOR2D (T, x, z, x,, z)) (9.32)

[?lscr'etizatifm of geometry and grid generation. For this example, the thin
airfoil case is being solved (Fig. 9.17). For simplicity, only two elements will be
psed so ‘that no computations are necessary. At this phase the geometrical
information on the grid has to be derived. This can be automated by computer

routipes for more complex situations, but for this case the vortex point
locations are

(xo1, z01) = (c/8, 0) (02, Zo2) = (5¢/8, 0)
and the collocation points are
(xclx ch) = (3C/8’ O) (xc2: zc2) = (70/8) 0)

The: normal vectors m must be evaluated at the collocation points, and for an
arbitrary element i are

n; = (sin B;, cos 8;) (9.33)
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where the angle B; is defined in Fig. 9.18a. In this particular case, when the
airfoil has no camber and is placed on the z =0 plane, both normals are

identical:
lll = (0, 1) n2 = (0, 1)

Influence coefficients. Here the condition requiring zero velocity normal to the
airfoil will be enforced. This boundary condition, according to Eq. (9.4), is

(q+Q.)-n=0 (9.34)

The velocity q is induced by the unknown vortices, while the free-stream
normal component can be calculated directly, and hence is moved to the
right-hand side of the equation:

g'n=-Q.'n (9.34a)

Because, in this case, the airfoil was divided into two elements with two
unknown vortices of circulation I';, T',, two equations based on the zero flow
across the airfoil boundary condition will be derived at the collocation points.
Defining as positive T' a clockwise rotation, the velocity induced by a unit
strength vortex at point 1 on collocation point 1 is calculated with Eq. (9.32):

1
, =VOR2D (1.0, x4, 2.4, , =<0, - )
(u11, wi1) ( Xcts Zets Xo1, Z01) 27 c/4

and the velocity induced at collocation point 1, by a unit vortex at point 2, is

1
(u12, wy2) = VOR2D (1.0, x4, 201, Xo25 Zo2) = (0, - C/4>

The velocity induced at collocation point 2, by a unit vortex at point 1 is

1
(121, wa1) = VOR2D (1.0, x.2, 22, Xo1, 201) = (0’ 2w 3c/4)

and the velocity induced at collocation point 2, by a unit vortex at point 2 is

1
(12 2) = VOR2D (10, x5, 72, X 20) = (0, = 5 ——2)

The influence coefficients a; are really the normal component of the flow
velocity induced by a unit strength vortex element T, at collocation point i:

a; =q;([;=1)-m, (9.35)

For the current problem, Eq. (9.35) is applied to collocation point 1 and to
vortex point 1, thus

1 -2
ay = (uyy, w) m = (0’ T 2m- c/4>(0’ = 7c
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Similarly for the second vortex,

2
ap = (U2, wi2)(0, 1) =—
c
and for the second collocation point,
_ 2
az = (uy, w,1)(0, 1)=-——
37c
_ 2
az = (uy, w2)(0, 1)=—-—
nc

Note that the left-hand side of Eq. (9.34a) can be described now as
2
q-n=24a;; fori=1,2 (9.36)
j=1

Establish RHS. The solutiqn is based on enforcing the boundary condition of
Eq. (9.344) at the .collocatlon points. Since the product Q.. - n is known it is
transferred to the right-hand side of the equation:

q-n=-Q.-n=RHS (9.37)

It is useful to express the component of the free stream in vector form to allow
easy vector operations; for this particular case the right-hand side (RHS) is

RHS, = —(Uw, Ww) - (938)

where (U., W..) = Q..(cos a, sin ). Computin
L * ’ : the RHS
collocation points results in puting vector for the two

RHS, = -Q. sin a
RHS; = -Q.sina

2
,; a;[;=RHS;, i=1,2 (9.39)
and explicitly, for this particular case,
( =2/mc  2/mc \(T, . 1
—2/37c —2/nc>([‘2> = ~Q-sin a<1>
which can be solved by standard matrix methods

Secondary computations: pressures, loads, velocities, etc. The solution of the
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above set of algebraic equations is

<I‘1) = <%>an sin «
r,, \{y7T
The resulting pressures and loads can be computed by using the Kutta—
Joukowski theorem (Section 3.11):
AL; = pQ.r;

and by assuming a constant pressure distribution along the element, the
pressure difference becomes

Ap; = pQ.Ti/a

where a is the panel length. The lift and moment are then

2
L= AL,=pQZimcsin & (9.40)
i=1
2 C2
M=-) ALx;= —pQﬁ,nZsin a (9.41)
i=1

and the nondimensional aerodynamic coefficients are

L
C,=——=2nsina 9.42
"= Tp0 (0.42)
M T
C.= =——sina 9.43
Qi 2 64

These results are similar to those for a zero-thickness symmetrical airfoil
(Section 5.4) and equal to the exact flat plate solution (Section 6.5.1) and the
method can easily be expanded to various camberline shapes and even
multielement lifting airfoils.

Description of more complex methods for solving the potential flow
problem will be presented in the following chapters.

9.9 ACCOUNTING FOR EFFECTS OF
COMPRESSIBILITY AND VISCOSITY

The potential flow model presented in this chapter results in a very simple
mathematical model that can be transformed into a very efficient and
economical numerical solution. This resulted in the development of three-
dimensional “panel codes” for arbitrary geometries and, naturally, modifica-
tions were sought to improve these methods beyond the limits of incompres-
sible inviscid flows. Some of these modifications are listed here.
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Effects of Compressibility

The first and most straightforward modification to an incompressible potential
flow based method is to incorporate the effects of “low-speed compressibilit :
(e.g., for M <0.6). This can be obtained by using the Prandtl-Glauert rule );
developed in Section 4.8. Thus, small-disturbance flow is assumed anél X
compressibility factor 8 can be defined as , :

B=V1-M (9.44)

If the free stream is parallel to the x coordinate then the x coordinate is being
stretched with increased Mach number while the y and z coordinates remain

unchanged. Consequently an equivalent incompressible potenti
defined such that g potential Pu-o can be

Dpy-o= QM(%; Y Z) (9.45)

Once the' x coordinate is transformed, the equivalent incompressible potential
Problem 1s solved'as described previously. This procedure results in an increase
in the aerodynamic forces (as noted in Section 4.8) and

C.M=0)

C(M>0=—2=1)
(M >0) 5 (9.46)
Co(M >0) = @ (9.47)

Effects of Thin Boundary Layers

When analyzing high Reynolds number flows in Section 1.8, it was assumed
that the boundary layer is thin, and the boundary conditions are specified on
the actual surface of the body. However, by neglecting the viscosity terms in
th.e momentum equation, the information for calculating the viscous surface
friction drag is lost too.

‘ It is possible to account for the viscosity effects such as displacement
thickness and friction drag by using a boundary-layer solution that can be
matched with the potential flow solution. Two of the most common methods
for combining these two solutions are as follows.

lf The‘ first approach is to use a boundary-layer solution, usually a two-
dlmfansnonal model along a streamline, which will work for simple wings and
podles. The solution begins by solving the inviscid potential flow, which results
in the_ velqcity field and the pressure distribution. This data is fed into
two-dqnensnonal boundary-layer solutions that provide the local wall friction
coefﬁleent and the boundary-layer thickness. The friction coefficient can be
tl?en integrated over the body surface for computing the friction drag. If the
displacement thickness effect is sought, then a second iteration of the potential
flow computation is needed, but now with modified surface geometry. This
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modification can be obtained by displacing the body panels according to the
local boundary-layer displacement, and the procedure can be reiterated until a
satisfactory solution is obtained. Some of the principles of a computer program
(e.g., the MCAIR panel code) that uses this method are presented in Ref. 9.5.

2. The second approach to incorporate boundary layer solutions into panel
codes is to follow the procedure described above, but to account for the
displacement effects by a modification of the boundary conditions instead of a
change of the surface geometry. In this case, at each panel the normal flow is
given a certain blowing value that accounts for the local boundary-layer
displacement thickness 6*. The formulation can be derived, using the results
of Section 4.4, as follows:

Ao =2 (q6%) (9.48)
Os

where ¢ is the local streamwise velocity component of the potential flow
(outside the boundary layer) and the differentiation takes place along a
streamline s. The transpiration velocity then becomes g, = Ao;. For more
details on this approach see Ref. 9.2.

Models for Wake Rollup, Jets, and Flow
Separations

The thin wake behind lifting wings tends to follow the local velocity (Eq. (9.18))
which results in a wake rollup due to the lifting surface and the wake-induced
velocity. This condition causes the shape of the wake to be unknown when the
boundary conditions for the potential flow are established. Traditionally, the
shape of the wake is assumed to be known (e.g., planar vortex sheet) and after
the solution is obtained the validity of the initial wake shape can be rechecked.
In Chapter 14 two methods used by two panel codes will be presented to
calculate the wake shape (VSAERO-wake relaxation,”? and PMARC-time

stepping®®°7).

Since the wake is modeled by a doublet/vortex distribution, it is possible
to extend this method for modeling jets and even shear layers of separated
flows. Details about models to represent the effect of jets can be found in Refs

9.2 and 9.6, while models to treat some effects of flow separation will be
presented in Chapter 14.
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PROBLEMS

9.1. Solve the pfo.blem of a flat plate at an angle of attack of « using the lumped-vortex
?k;mgnlt. ll)1v1de the chord to five equal panels of length a, as shown in Fig. 9.19

a) Calculate the infl i i is 1 i minan

Calcula e influence coefficient matrix a;. Is this is a diagonally dominant

(b) Calculate the lift and moment coefficients. How do these compare with the
analytical results of Chapter 5.

Collocation point i

-y
r
f | T ¥
0 1 1 h 1
- a -
I n I I I
0 % a g 2a§ 3a§ 4a§ Sa X

FIGURE 9.19
Discrete vortex model for the flat plate at angle of attack.

9.2. Calculate the .lift and moment coefficient (about the origin, x = 0) of the two flat
plates shown in Fig. 9.20. Use a single-element lumped-vortex model to represent
eac'h Plate and investigate the effect of the distance between the two plates on
their lift (repeat your caiculation with gap values of ¢/2, ¢, 2¢, 4c).

z‘}

n It
‘ .
e._» [ ——
I
el z < ;f: |

[N

FIGURE 9.20
Lumped vortex model for the tandem wing problem.

CHAPTER

10

* SINGULARITY
ELEMENTS AND
INFLUENCE
COEFFICIENTS

It was demonstrated in the previous chapters that the solution of potential flow
problems over bodies and wings can be obtained by the distribution of
elementary solutions. The strengths of these elementary solutions of Laplace’s
equation are obtained by enforcing the zero normal flow condition on the solid
boundaries. The steps toward a numerical solution of this boundary-value
problem are described schematically in Section 9.7. In general, when increas-
ing the complexity of the method, mostly the “‘element’s influence” calculation
becomes more elaborate. Therefore, in this chapter, emphasis is placed on
presenting some of the typical numerical elements upon which some numerical
solutions are based (the list is not complete and an infinite number of elements
can be developed). A generic element is shown schematically in Fig. 10.1, and
it requires the information on the element geometry, and strength of
singularity, in order to calculate the induced potential and velocity increments
at an arbitrary point P (xp, yp, zp).

infl
Xp, Yp) Zp in ueflce Au, Av, Aw
Panel geometry || coefficient | = AD )
Singularity strength calculation d

FIGURE 10.1
Schematic description of a generic panel influence coefficient calculation.

265
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For simplicity, the symbol A is dropped in the following description of
the singularity elements. However, it must be clear that the values of the
velocity potential and velocity components are incremental values and can be
added up according to the principle of superposition.

In the following sections some two-dimensional elements will be pre-
sented, whose derivation is rather simple. Three-dimensional elements will be
presented later and their complexity increases with the order of the polynomial
approximation of the singularity strength. Also, the formulation is derived in
the panel frame of reference and when these formulas are used in any other
“global coordinate system,” the corresponding coordinate transformations
must be used (for rotations and translations).

10.1 TWO-DIMENSIONAL POINT
SINGULARITY ELEMENTS

These elements are probably the simplest and easiest to use and also the most
efficient in terms of computational effort. Consequently, even when higher-
order elements are used, if the point of interest is considered to be far from the
element, then point elements can be used to describe the “far-field” effect.
The three point elements that will be discussed are source, doublet, and
vortex, and their formulation is given in the following sections.

10.1.1 Two-Dimensional Point Source

Consider a point source singularity at (x,, o), with a strength o, as shown in
Fig. 10.2. The increment to the velocity potential at a point P (following
Section 3.7) is then

®(x, 2) = % In V(x = xof + (z — 2 (10.1)

and after differentiation of the potential, the velocity component increments
are

_ 9P o X —Xxq
‘T T 2m(x —xo)’ + (z — z5)° (10.2)
_9P o z2—2

M 27 (x — xo)2 + (z — 20)? (10.3)

10.1.2 Two-Dimensional Point Doublet

Consider a doublet that is oriented in the z direction [m=(0, 1)] as in Section
3.7. If the doublet is located at the point (x0, zo), then its incremental influence
on the velocity potential at point P (Fig. 10.2) is

—H Z—2
L
(. 2) 27 (x — x0)% + (2 — z0)?

(10.4)
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z**
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(o, 20 > Point
x element
FIGURE 10.3
T ence ion f; anel to global coord-
i int singularity element Transformation from p. gl
Tth;oli[:::u;nce of & point singsianty inate system.
a .
and the velocity component increments are
u_@=g (x — x0)(z — 20) — (10.5)
ox  m[(x —x0)* +(z — )]
2 2
3P _—p (x—x0)" = (z — 2) (10.6)

T8z 27 [(x —xoP + (z — 2)°)
ic si i t is given in a system
In the case when the basic smgulanty elemen
(x*, z*), which is rotated by the ar gle B relative to the (x, z) system, as sho.wn
in l;ig. 1’0.3, then the velocity components can be found by the transformation

R I

10.1.3 Two-Dimensional Point Vortex

gth T located at (xo, o). Again using the

i int vortex with the stren .
o ioms o th 0.2, and the results of Section 3.8, the

definitions of the points, as in Fig. 1 . ;
increment to the velocity potential at a point P is

o= -1 tan 1 22 (10.8)
2n X —Xg

and the increments in the velocity components are

T z—2 (10.9)
U= m(x - x0) + (z - 20)
-T X=Xy (10.10)

W (- xo) + (2~ 20)

Note that all these point elements fulfill the requirements preseptledtl;l)
Fig. 10.1. That is, the increments of the velocity components and potential a
dep.end on the geometry (x, 2, Xo, Zo) and the strength of the element.
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10.2 TWO-DIMENSIONAL CONSTANT-
STRENGTH SINGULARITY ELEMENTS

The discretization of the source, doublet, or vortex distributions in the
previous section led to discrete singularity elements that are clearly not a
continuous surface representation. A more refined representation of these
singularity element distributions can be obtained by dividing the solid surface
boundary into elements (panels). One such element is shown schematically in
Fig. 10.4, and both the surface shape and the shape of the singularity strength
distribution are approximated by a polynomial. In this section, for the surface
representation, a straight line will be used. For the singularity strength, only
the constant, linearly varying, and quadratically varying strength cases are
presented, but the methodology of this section can be applied to higher-order
elements.

In this section, too, three examples will be presented (source, doublet,
and vortex) for evaluating the influence of the generic panel of Fig. 10.4 at an
arbitrary point P. For simplicity, the formulation is derived in a panel-attached
coordinate system, and the results need to be transformed back into the global
coordinate system of the problem.

10.2.1 Constant-Strength Source Distribution

Consider a source distribution along the x axis as shown in Fig. 10.5. It is
assumed that the source strength per length is constant such that olx)=0=
const. The influence of this distribution at a point P is an integral of the
influences of the point elements (described in the previous section) along the
segment x;— x,.
o [
D=— 1 InV(x—x0)*+2%dx, (10.11)
27 J,,
o (™ X — X,
u=_ | G—xp+ 2 dx, (10.12)
o (7 z

W=Zr mdxo (10. 13)

The integral for the velocity potential (Eq. (10.11)) appears in Appendix
B, Eq. (B.5), (note Inr*=2Inr is used in the derivation) and in terms of the

—~—> FIGURE 104
A generic surface distribution element.
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(x, 2)

o(x) = const.

NS bttt/ FIGURE 10.5

X Constant-strength source distribution
/xf + + { ‘ ; $*x2\ along the x axis.

corner points (x;,0), (xz,0) of a generic panel element (Fig. 10.6), the

distances r,, 7, and the angles 6;, 6, it becomes
@ =2 [(x—x)Inrd— (x — x;) Inr +22(6,— 61)] (10.14)
4n

where
k=1,2 (10.15)

1

6, =tan™
k X = X

r,‘=\/(x—x,,)§+z2 k=1,2 (10.16)

The velocity components are obtained by differentiating the potential, and
following Appendix B (Egs. (B.6) and (B.7)), they are

2
o, nh_o. n (10.17)
= — —=—ln—
“ 2nlnr2 an r3

FIGURE 10.6 .
Nomenclature for the panel in-
fluence coefficient derivation.

x1.0) (x2, 0) *
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Returning to x—z variables these equations become

¢ = % {(x —x)In{(x —x1)*+ 2] ~ (x ~x,) In [(x — x,)% + 27

+22<tan‘1 —tan~1—2 )} (10.19)

X — X5 X —Xq

o (x—x)*+2z?
=—l -_— X
“Cat (x—x)*+ 22 (10.20)

g -1
w=—|tan

- —tan~! —2 ] (10.21)

X — X2 X — xl
Of particular interest is the case when the point P is on the element
(usually at the center). In this case z = 0+ and the potential becomes

P(x, 01) = ﬁ [(x —x)In (x —x,)*— (x — x,) In (x—x2)"]  (10.22)
and at the center of the element it becomes
X1+ x, )_i N (xz—xl)2
<I><———2 , 0% o (x2—x)) In I (10.224)
The x component of the velocity at z =0 becomes
u(x, 04) =2 F =X (10.23)

2 |(x — xy)|

which is zero at the panel center and infinite at the panel edges.

For evaluating the w component of the velocity, it is important to
distinguish between the conditions when the panel is approached from its
upper or from its lower side. For the case of P being above the panel 6, =0,
while 8, = &. These conditions are reversed on the lower side and therefore

w(x, 04) = :tg (10.24)

This is the same result obtained in Section 3.14 for the source distribution.

10.2.2 Constant-Strength Doublet Distribution

Consider a doublet distribution along the x axis consisting of elements pointing
in the z direction [p = (0, u)], as shown in Fig. 10.7. The influence at a point
P(x, z) is an integral of the influences of the point elements between x, — x,:

X2

P(x, z)= £ z

27 )y, (x —x0)* + 22 dxo (10.25)
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o P

ZA (x, 2)

u= (0, u) = const.

FIGURE 10.7
-——mmmw%% Constant-strength  doublet  distribution

X X3 along the x axis.

and the velocity components are
_u J’ 2 (x—x0)z
ulx, 2) = ah [(x—xe?+22PF % -

1

(10.26)

—p [ (x—x0)’— 27
== w5 dx 10.27
wix, 2) 27 by, [(x —x0)?+ 222 ° ( )
Note that the integral for the w component of the source distrib}ltion is
similar to the potential integral of the doublet. Therefore, the potential at P

(by using Eq. (10.21)) is

(I)=~_—M[tan_1 —tan~' —= ] (10.28)
2 X —x; X — X
Comparing this expression to the potential of a point vortex (Eq. (10.5'3))
indicates that this constant doublet distribution is equivalent to two point
vortices with opposite sign at the panel edges such that r= U (see Flg 10.8).
Consequently, the velocity components are readily available by using Egs.

(10.9) and (10.10):

_" z .z ] (10.29)
“Ton [(x—x1)2+z2 (x —x2)* + 2°
_IH[_xmx | xox ] (10.30)
M [(x—x1)2+22 (x—x)°+2°
ZA ZA
W = const.
= = u ry=u
u\ HONOT 'r\'?‘ » _%———9—>
N HHOF " > - e x

FIGURE 10.8 . . h
Equivalence between a constant-strength doublet panel and two point vortices at the edge of the

panel.
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When the point P is on the element (z = 0%, x, <x <x,) then following
Section 3.14

®(x, 0+) = #2‘- (10.31)
and the velocity components become
d
u(x, 0+) = ¥ g (10.32)
dx
—u 1 1 ]
,0+)=— [ - 10.
wix, 0%) 2n L(x —x1) (x—xy) (10.33)

and the w velocity component is singular at the panel edges.

10.2.3 Constant-Strength Vortex Distribution

Once the influence terms of the constant-strength source element are obtained,
owing to the similarity between the source and vortex distributions, the
formulation for this element becomes simple. The constant-strength vortex
distribution y(x) = y = const. is placed along the x axis as shown in Fig. 10.9.
The influence of this distribution at a point P is an integral of the influences of
the point elements between x, — x,.

Y (., 12

bd=-|t .
2.71:,[1 an x—xodxo (10.34)
Y [ z

= — ———d .

“ ZnJ;l (x—xgftz2 0 (10.35)

__ Y [P x=X

w= an (x—x0)2+22dx0 (10.36)

Details of the integral for the velocity potential appear in Appendix B
(Eq. (B.10)) and in terms of the distances and angles of Egs. (10.15) and

ZA

L ]
P(x, 2)

y(x) = const.

AR RRRRRRR ,  FIGURE 109 S
IMAVAVAVAWVAVANAA N > Constant strength vortex distribution

X .
X X3 along the x axis.
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(10.16) (as shown in Fig. 10.6) it becomes

Y z rf
@=L [w-x)6-(x-x20:+ 2] (1037)

and in terms of the x-z coordinates:

y [ o,z Lz z (x—x1)2+22]
P=—|(x—x)tan ——(x —xy)t +-ln————
2n ( ) X=Xy (x = x2) tan x-x, 2 n(x——:c2)2+z2

(10.38)

Following the formulation used for the constant source element, and
observing that the # and w velocity components for the vortex distribution are
the same as the corresponding w and u components of the source distribution,
these equations become

Y

u=—|tan™!
2n [

—tan~' —= ] (10.39)
x—xz x_xl

y . (x—x)+2°
=L g2 7L
g 4Jtn()c—x1)2+z2 (10.40)

The influence of the element on itself at z =0+ and (x; <x <x,) can be
found by approaching from above the x axis. In this case 6, =0, 8, = and
=" Y
O(x, 0+) = e [ —x)0—(x —xx)x] = > (x —xy) (10.41a)
Similarly, when the element is approached from below, then

O(x, 0-) = —% (x — x3) (10.41b)

The x component of the velocity can be found by observing Eq. (10.24)
for the source or by recalling Section 3.14,

u(x, 0%) = :t%’ (10.42)

and the w velocity component is similar to the u component of the source (Eq.
(10.23)):

y ., (x— x2)2

w(x, 01) = I:r—rln x—x.P (10.43)

In most situations the influence is sought at the center of the element where
r, =r, and consequently w(panel — center, 03) = 0.
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10.3 TWO-DIMENSIONAL LINEAR-
STRENGTH SINGULARITY ELEMENTS

The representation of a continuous singularity distribution by a series of
constant-strength elements results in a discontinuity of the singularity strength
at the panel edges. To overcome this problem, a linearly varying strength
singularity element can be used. The requirement that the strength of the
singularity remains the same at the edge of two neighbor elements results in an
additional equation. Therefore, with this type of element, for N collocation
points 2N equations will be formed (see examples in Chapter 11).

10.3.1 Linear Source Distribution

Consider a linear source distribution along the x axis (x; <x <x,) with a
source strength of o(x) = 0y + 0,(x — x;), as shown in Fig. 10.10. Based on the
principle of superposition, this can be divided into a constant-strength element
and a linearly varying strength element with the strength o(x)=o,x.
Therefore, for the general case (as shown in the left-hand side of Fig. 10.10)
the results of this section must be added to the results of the constant-strength
source element.

The influence of the simplified linear distribution source element, where
o(x) = o,x, at a point P is obtained by integrating the influences of the point
elements between x,— x, (see Fig. 10.11).

o, (™
®= le xoIn V(x = xo)* + 22 dx, (10.44)
_ 01 [ _xo(x —x0)

o), G2 (10:43)

g, XoZ

o), Goxp 2 (10:46

olx) =09 +0((x — x))

o6 o,(x —xy)

| = +

Oo

>
>
Xy X3 X2 x

=
=
=

Xy X3

FIGURE 10.10
Decomposition of a generic linear strength element to constant-strength and linearly varying
strength elements.
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P
zZA (x, 2)
r 2
o(x)
0,
8, FIGURE 10.11
o Nomenclature for calculating the influence of
X X2 x linearly varying strength source.

Details of the integration are presented in Appendix B (Eq. (B.13)), and
the results are
2 2.2 2 _ 2.2
o= [LLZ- Inri S MnL.r InL IS e Y 2x2(0;— 0;) — x(x, — xl)]
4 2 2
(10.47)

where 7y, r;, 8,, and 0, are defined by Eqs. (10.15) and (10.16). The velocity
components are obtained by differentiating the velocity potential (Appendix B,
Egs. (B.14) and (B.15))

2
u =% [’5‘ In 2+ (xy — x5) + 2(6, — 01)] (10.48)
7T rs
0, r
W= zIn=5+2x(6, - 6,) (10.49)
T ry
Substitution of 7,, 6, from Eqs. (10.15) and (10.16) results in
2_ .2 .2 2_,2_,2
®= :—;r [x—lez—ln [(x —x)*+ 23] — % In[(x — x,)* + 27]
+ 2.xz<tan‘1 —tan™' —= ) —x(x;— xl)] (10.50)
X —Xx, XX

o [x, (x—x)?+2?
u=—|-lh——5——
2m L2 (x—x,)*+ 22

z .,z
+(x;—xp) + z(tan‘l —tan™' )]
X — X3 X — X

(10.51)

r 2 2

o x—x)°+z

w=— zln(l—)22+2.x(tan_1
4l (x—x)) +z

—tan'—2 )] (10.52)

X =X, X =X,

When the point P lies on the element (z =04, x; <x <x,), then Eq.
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(10.50) reduces to
o
Q= Elr [(x*—x}) In (x —x;) — (x* = x3) In |x — x5} —x(x,—x;)] (10.53)

At the center of the element this reduces to

o X,—x; 1
o=z (m ) (10.53a)
Also, on the element
u=ﬂ[xlnx_xl+ ]
= T (x1—x5) (10.54)
w= :t;x (10.55)
and at the center of the element
u '—Zr(xl _xZ) (10.540)
and
0,
w= :t; (x;—xy) (10.55a)

10.3.2 Linear Doublet Distribution

Consider a doublet distribution along the x axis with a strength u(x)=
Mo+ pq(x = xl)., consisting of elements pointing in the z direction [p = (0, u)],
as shown in Fig. 10.12. In this case, too, only the linear term (u(x) = u,x) is

z[}

rx) = pg + pilx — xy) P(x,2)

X
)%,' \SQ FIGURE 10.12

Linearly varying strength doublet
I, =l + it —x)l element.
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considered and the influence at a point P(x, z) is an integral of the influences
of the point elements between x;— x,.

Tl [P XoZ
D(x, z) = 27 ) G-xopt 2 dx, (10.56)
_M Xo(x — Xo)2
u(x, z)= p L [ —xof + 2 dx, (10.57)
28 [(x — x0)* = 2%1xo
w(x, z) = o L [ —xP+22F (10.58)

The integral for the velocity potential is similar to the w velocity component of
the linear source (Eq. (10.46)). Therefore, following Eq. (10.49), the result is

2
i r
&= 4n‘ [2.x(02 —6)+zIn 2] (10.59)
and in cartesian coordinates
— _ 2 + 2
o="H [Zx(tan" —tan~! — )+zl M}%] (10.60)
4 X=X, X =X (x=x)+z

To obtain the velocity components we observe the similarity between Eq.
(10.59) and the potential of a constant-strength vortex distribution
(Eq. (10.37)). Replacing p, with —y in Eq. (10.38) yields

2 2
z X—x) +z
—2(x — x,) tan™! +z ln%———z]
X, X — X, (x—x)°+z

(10.384)
and therefore the potential of the linear doublet distribution of Eq. (10.60) is

iul -1 z
0rr = [oe )
yys (x — x;) tan T

@ = o** +5_le("‘0‘ —x,0,) (10.61)

and the two last terms are potentials of point vortices with strengths u,x, and
u,x, (see Eq. (10.8)). The velocity components therefore are readily available,
either by differentiation of this velocity potential or by using Egs. (10.39) and
(10.9):

u=-H21 |:tan'1 —tan™! ]
2n X —X; X —Xx
Uix2 z WXy z
- 10.62
2m (x—x)2+2% 2w (x—x,)*+2? ( )
and for the w component using Eqs. (10.40) and (10.10)
_ My (x=x)°+2° Xy X=X Xy X—X (10.63)

4r (x—x)?+22 2m (x—x)’+2° 27 (x—x)*+ 27
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The values of the potential and the velocity components on the element
(z =04, x,<x <x,) are

_
D= 3F?x (10.64)
gt
u="t 5 (10.65)
# [ (x—x)*  2x 2x, ]
=—"——1In + -
drl (x—x)* x—-x; x-—x, (10.66)
and the w velocity component at the center of the element becomes
X, +x
w=-H [#] (10.66a)
T x2 - x]

and the velocity is singular at the panel edges because of the point vortices
there.

Note that for the general element, where u(x)=po+ ui(x —x;), the
potential becomes

<I>=<I>**—;—;(02—81)+%(x1-—x2)02 (10.67)

and due to the potential jump at the edges of this doublet distribution two
concentrated vortices exist. The vortex at x, will have a strength of —pu, while

the one at x, will have a strength of [u,(x, —x;) + Ko}, as shown schematically
in Fig. 10.12.

10.3.3 Linear Vortex Distribution

In this case the strength of the vortex distribution varies linearly along the
element

Y(x) = Yo+ 71(x —xy)
Again, for simplicity consider only the linear portion where y(x) = y,x and ¥,

is a constant. The influence of this vortex distribution at a point P in the x-z

plane is obtained by integrating the influences of the point elements between
X=Xy

1N -
q)= —Z]r[r] than lx_xo de (10.68)
"N *2 XoZ
27 ). —_(x — xo)2 2 dx, (10.69)
__"n Jaz xo(x — xo)
2w )., _—*(x ~x0)2 e dx, (10.70)
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Using the integral in Appendix B (Eq. (B.18)):

2 2_ 42 52 X2 — x2— 22
R 6| aom
T 2

The velocity components are similar to the integrals of the linear source (Eqgs.
(10.51) and (10.52))

_ 2 2
__n [Z ln(x_ﬁ):i_?_x(m—l

a1 2 )] (10.72)

dn ™ (x—x)*+ 27 X=X x—x
vilx. (x—x)*+2° ( o,z PR )]
= 1 T 4 (x, —x,) + z{ tan ~ tan
Y= o [2 In (x —x,)* + 2° (1 = x2) x—x, X —x
(10.73)

When the point P lies on the element (z =0+, x, <x <x,), then Eq.
(10.71) reduces to

®= i—Y4—‘ (2 -x2) (10.74)

At the center of the element this reduces to

®= :t% (03 + 2x1x, — 3x2) (10.74a)
Also, on the element
=0y (10.75)
2
w=ﬁ[x In—1 +(x1—x2)] (10.76)
275 |x - le

and at the center of the element (above +, under —):

u= ﬂ:% (X1 +x2) (10.75a)

w=—2L(x,—x,) (10.76a)
2n

10.3.4 Quadratic Doublet Distribution

As indicated by Eq. (3.150) in Section 3.14 a quadratic doublet distribution is
similar to the linear vortex distribution of the previous section. However, in
situations when the Dirichlet type boundary condition is applied, it is more
convenient to use the corresponding doublet distribution (instead of the linear
vortex distribution). Thus, a quadratic doublet distribution along the x axis
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P(x, z)
TR p= o+ i (x = X))+ palx — x)?
r2
r
9, - eZ
\;x, xz‘/ 7:
Fi=—wo Fy=1lpo + ui(x = x)) + pplx — x3)?)
FIGURE 10.13

Quadratic-strength doublet element.

(x1 <x <x,) will have a strength distribution of

1(x) = po + py(x —x1) + py(x — x,)?

where the doublet elements pointing in the z direction [n=(0, u)] are
selected, as shown in Fig. 10.13. Since the contribution of the constant and
linear strength terms were evaluated in the previous sections, only the third
term (u(x) = pu,x?) is considered and the influence at a point P(x, z) is an
integral of the influences of the point elements between X1 X,

g

X2 2
-1 xyz
D(x, z)= dx 10.77

* 2) 2n L (x—x)?+227° ( )

u(x, z) =i2fxz (x — xo)zxp

. m dx, (10.78)

—H2 [ [(x —x0)* — 2%Ix3
21 by, (s T (10.79)

w(x, z) =

The integral for the velocity potential is obtained by introducing the

variable X =x —x, (thus dX = —dx,), which transforms Eq. (10.77) to the
form

X=X (2 __ 2
@_&J‘ (x 2xX+X)de

2, X%+ 22

The three integrals formed by the terms appearing in the numerator are
evaluated in Gradshteyn and Ryzhik,%3 pp. 68-69, and yield

D(x, z) = é% [(x2 —2%)(0,- 6,) — xz ln:—2§+ 2(x, — xz)] (10.80)

where the variables r,, r,, 8,, and 6, are shown in Fig. 10.13.
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Note that Eq. (10.80) can be rewritten as
®(x, z) = ** + -2’-‘7—1 (x30, — x26,) (10.81)

such that ®@** is the potential of the equivalent linear vortex distribution of
Eq. (10.71) (with g, = —7,/2).

3 (L] 2
O** = é‘—z [—xz 1n:—§+ 2(xs — x1) + (22 — 22)(6; — 92)] + 221136, ~ 210
" 1 (10.81a)

. (10.81) states that the potential of a quadra.tic doublet
g;;f:iifstriz;l iEs:qequ(ivalen)t to the velocity poten?ial of a linearly varying stringth
vortex distribution plus two concentrated vortices at the panel edges as shown

i in Fig. 10.13. .
SChem'I?:((:)at:gi; thegvelocity components we can use the similarity bet.we.fl:)n ]?Zq.
(10.80) and the potential of a linearly varying strengtl? vortex (ilgt;lz)ugﬁg
(Egs. (10.72) and (10.73)). Replacing p, with —v1/2 in Eqs._ (10. 2 :
(10.73) and adding the velocity components of the two point vortices yie

2 sz zxf
u r _ 2 - ] 10.82)
“ =2121 [Z lnr%—Zx(Oz 0+ (x—x)’+2° (x—x)’+2° (

and R

x% X — Xy _/2 X — X3 ]

2(x—x1+20 2 (x-x)+7?
(10.83)

The value of the potential on the element (z =0+, x, <x <x,) becomes

2
w=“—2[fln%+(xl—xz)+z(92_ 01)+
xl2 r;

fox’
2n

®d(x, 0+) = (6,—6,)

and above the element 8, — 8, = —m, whereas under the element 6, — 6, = 7.
Consequently,

2
X
®(x, 04) = ;&2_ (10.84)

Similarly the velocity components become

.85
u(x,O:t)=—2'l£]2;(—2x)(02—81)=:Fuzx (10.85)
2 2 °
Bz | X (x —x,)? _ Xy X2 ] (10.86)
i, 08) =12 S E s xS

and the velocity is singular at the panel edges because of the point vortices
there.
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Note that for the general element, where u(x) = po + u(x — X))+ po(x ~
x1)%, the potential jump at the edges of this doublet distribution results in two
concentrated vortices. The vortex at x, will have a strength of —u, while the
one at x, will have a strength of [ug+ py(x, —x;) + pa(x; — x,)°], as shown
schematically in Fig. 10.13.

10.4 THREE-DIMENSIONAL CONSTANT-
STRENGTH SINGULARITY ELEMENTS

In the three-dimensional case, as in the two-dimensional case, the discretiza-
tion process includes two parts: discretization of the geometry and of the
singularity element distribution. If these elements are approximated by
polynomials (both geometry and singularity strength) then a first-order
approximation to the surface can be defined as a quadrilateral* panel, a
second-order approximation will be based on parabolic curve-fitting, while a
third-order approximation may use a third-order polynomial curve-fitting.
Similarly, the strength of the singularity distribution can be approximated
(discretized) by constant-strength (zero-order), linearly varying (first-order), or
by parabolic (second-order) functions.

The simplest and most basic three-dimensional element will have a
quadrilateral geometry and a constant-strength singularity. When the strength
of this element (a constant) is unknown a panel code using N panels can be
constructed to solve for these N constants. In the following section, such
constant-strength elements will be described.

The derivation is again performed in a local frame of reference, and for a
global coordinate system a coordinate transformation is required.

10.4.1 Quadrilateral Source

Consider a surface element with a constant-strength source distribution o per
area bounded by four straight lines as described in Fig. 10.14. The element
corner points are designated as (x,, y;, 0), . . ., (x4, ys, 0) and the potential at
an arbitrary point P(x, y, z), due to this element is

iy f as
4x Js V(x —xo) + (y =~ yo)* + 2°

and the velocity components can be obtained by differentiating the velocity
potential:

D(x, y, z)=

(10.87)

o 3P 8@)

(4, v, w)= (a, e (10.88)

* A quadrilateral is a flat surface with four straight sides. A rectilinear panel has straight but not
necessarily flat sides and can be twisted!
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Pe
z 4\ (x,y,2)

(x2,¥2,0)

(x3, y3, 0)
(Xpyl'o)

o(x, y) = const.

FIGURE 10.14
Quadrilateral constant-strength
(x4, ¥4, 0) source element.

Execution of the integration within the area bounded by the four straigh't lil:g,?
requires a lengthy process, and the results are obtained by Hess and Smith.™
Using their results, the potential for a planar element becomes

q)_

j{[(x —x)(y2—y) — (¥ —y)(x2 —x1) In nt+tntdp,
T 4m

d12 r1+r2_d12

(x = x2)(y3 = y2) = (y — y2)(x3 — x3) In n+tr+dy
+ d23 r + rs — d23

(x = x3)(ys = y3) = (y — y3)(xa — X3) In rstratds
+ d34 r3+r4_d34

+ (x = x)(y1 = ya) = (¥ = Ya)(x1 — X4) In ntn+ d-ﬂ]

day rn+n—dy
mye, —h _ifMmuer—hs
+ 2| [tan“l<—-————-—12 ! 1) —tan ‘(—“—1 )
zZn Zr;
-h myzes—h
+ tan-l(ﬁgﬁg_z) — tan_l(M>
zr, 2r;
-h msses—h
+ tan“(ﬁej—é) - tan“(M)
zr zr,
+ tan-‘('"————‘"e“ - h‘) - tan-l('"——‘“e‘ — h‘)]} (10.89)
2r, zn
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where
dy,= \/(xz - x1)2 +(y— }’1)2 (10-900)
dys=V(xs = x2)* + (33— y2)° (10.90b)
d3y=V(xs—x3)° + (ys— y5)° (10.90c)
and diy=V(x1—x)° + (31— ya)* (10.90d)
my =271 (10.91a)
X2— X,
Mgy =222 (10.915)
X3— X3
My =220 (10.91¢)
X4— X3
gy = 2124 (10.91d)
X1 — X4
and
=V —-x)+(y—-y)+z> k=1,2,34 (10.92)
ee=(x—x)+22 k=1,2,34 (10.93)
he=(x—-x)(y—y) k=1,2,3,4 (10.94)

The velocity components, based on the results of Ref. 10.1, are

u=_0_[}’2_)’1 nt+n—dy ys—y, n+r—dy
4xl dy, nt+rn+d, dy rt+r+dy
)’4‘)’3ln’3+r4_d34+)’1_Y41n’4+"1"d41]
ds, rs+rat+dsy dy rn+rn+dsy
U=£[x1—-x2nrl+r2—d,2 Xo—X3, FK+r—dy
4x L dy, rn+rn+dy dy L+r+dy

X3 — X4 r3+r4—d34 X4 — X,

+

(10.95)

N d“‘] (10.96)

d34 r + Ty + d34 d41 Ts + r + d41

(o4 my,e,—h -
w=-— [tan“1 <——12 - 1) —tan™! (____m1262 hz)
4 zn zn

+tan™! (

+ tan~! <m34€3 - hs) — tan-! <m34e4 - h4))

Zrs Zry

+tan™! (Lle“ — h“) —tan™! (———m‘“e‘ — h‘)] (10.97)

2r, n

mye, — h, —1 [ M2n€3— hy
——— | —tan —_—
zr, zr,
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The u and v components of the velocity are defined everywhere, but at
the edges of the quadrilateral they become infinite. In practice, usually the
influence of the element on itself is sought, then near the centroid these
velocity components approach zero. The jump in the normal velocity com-
ponent as z— 0 inside the quadrilateral is similar to the results of Section 4.4.

o

w(z=01)==% > (10.98)
When the point of interest P lies outside of the quadrilateral then
w(z=01)=0 (10.99)

FAR FIELD. For improved computational efficiency, when the point of
interest P is far from the center of the element (x,, y,, 0) then the influence of
the quadrilateral element with an area of A can be approximated by a point
source. The term “far” is controlled by the programmer but usually if the
distance is more than 3-5 average panel diameters then the simplified
approximation is used. Following the formulation of Section 3.4 (in the panel
frame of reference) the point source influence for the velocity potential is

—0A

D(x,y,2)= 10.100
3 2) = NG =2+ (0 =y + 2 ( )
The velocity components of this source element are
OA(x - xO)
u(x,y, z)= (10.101)
® D)= sy + O —f + 2T
CA(Y — Yo)
v(x, y,z)= (10.102)
® )= a2+ 5 -9+ 2T
w(x,y, z)= 0A(z — ) (10.103)

4f(x — x0)> + (¥ — yo)* + 217

A student algorithm for calculating the influence of a quadrilateral constant
strength source element is given in Appendix D, Program No. 11.

10.4.2 Quadrilateral Doublet

Consider the quadrilateral element shown in Fig. 10.15, with a constant
doublet distribution. Using the doublet element which points in the z direction
the velocity potential can be obtained by integrating the point elements:

—u f zdS

4 Js[(x = x0)* + (y = yo)* + 2

This integral for the potential is the same integral as the w velocity component

D(x, y,z)=

(10.104)
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FIGURE 10.15
Quadrilateral doublet element and its vortex ring equivalent.

of the quadrilateral source and consequently

o=t [tan_l <m12e1 - hl) — tan-! (mxzez - hz)
4r zn zr,

+tan~! <m2382 - hz) _ tan-! <m23e3 - hs)
zZr, Zr;

+ tan™! (m34e3 — h3) —tan™! (mue4 — h")

zr; zr,
+tan™? (m,ﬂe., — h‘) —tan~! (m“el — hl)] (10.105)
Zry zrn
As z—0
Y
=L (10.106)

The velocity components can be obtained by differentiating the velocity
potential

od b 9P
(u, v, W)=<—, -, —)
Ox Jdy oz
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and following Hess and Smith'®! they are
u=i[ z(h —y)(ntr)
4 Lnn{nn—[(x —x)(x —x2) + (y = y)(y — y2) + 2°]}
+ 2(y2— ys)(ra+r3)
rars{rrs — [(x — x2)(x — x3) + (y = »)(y — y3) + 2°]}
+ z(y3 = ya)(rs +rs)
rsra{rsra = [(x — x3)(x — x3) + (y — y3)(y = ya) + 2°]}
+ z2(ya—y1)(ra+ )
rani{rary — [(x — x4)(x —x1) + (y — ya)(y — y1) + 2°]}
v=£—[ zZ(x —x)(r + ) _
dr Lnn{nn—[(x —x)(x —x) + (y —y)(y —») + 2°]}
+ 2(x3 —x2)(rn+ 13)
rr{nr —[(x —x2)(x —x3) + (y — »)(y —y3) + 2°]}
+ z(xs—x3)(rs + 1)
rsra{rsry — [(x — x3)(x —x4) + (y — y3)(y — ya) + 2]}
n 2(x; —xg)(rat 1)
rar{rary — [(x — x4)(x —x1) + (y — ya)(y — 1) + 2°]}
- [ [ —x)(y —y1) = (x —x)(y = y)I(rs + 1)
4 Lnr{nn —[(x —x)x —x2) + (y ~y)(y —y2) + 2°}}
[((x =x3)(y =y2) = (x = x)(y = y3)|(r2 + 13)
nr{nr = [(x —x2)(x —x3) + (y — y)(y —y3) + 2°]}
[((x = xa)(y —y3) = (x = x3)(y —y)l(rs + 1)
rsra{rsrs — [(x — x3)(x — x4) + (¥ = y3)(y — ya) + 2°1}
[ —x)(y —ya) = (x —x)(y —y)(ra + 1)
rari{rary — [(x — x)(x — x1) + (¥ — y)(y — y1) + 2°]}
On the element, as z— 0,

] (10.107)

] (10.108)

] (10.109)

u=0 v=0
_# [ [(x —x)(y —y1) — (x = x)(y = y2)|(r + 15)
4x Lrin{nr —[(x —x)(x —x2) + (y — y)(y = y2)1}
[((x = x3)(y —y2) = (x = x2)(y —y3)(rz + 1)
nr{rnr = [(x — x)(x —x3) + (y —y2)(y — y3)]}
[((x —x)(y —y3) = (x —x3)(y —ya)(rs + 1)
rsra{rsry — [(x — x3)(x — x4) + (¥ — y3)(y — ya)]}
[&—XMY—»%%x—an—hmm+n)]
rar{rar — [(x — x4 )(x —x) + (y —ya)(y — y)1}
(Note that z =0 must be used in the r, terms of Eq. (10.92), too.)

(10.109a)
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In Section 10.2.2 it was shown that a two-dimensional constant-strength
doublet element is equivalent to two equal (and opposite direction) point
vortices at the edge of the element. Similarly, in the next section we will show
that the three-dimensional constant-strength doublet element is equivalent to a
constant-strength vortex ring that is placed at the panel edges. Therefore, the
above formulas for the velocity potential and its derivatives are valid for
twisted panels as well (but in this case when the point P lies on the element the
u, v velocity components may not be zero).

FAR FIELD. The far-field formulas for a quadrilateral doublet with area A can
be obtained by using the results of Section 3.5 and are

ey, 2)= _4‘:;4 2[(e = x0)* + (y = yo)* + 277 (10.110)
_3uA (x —x0)z

“= 47 [(x —xo)* + (y —yo)* + 2,2}5/2 (10.111)
_3pa (y = yo)z

v= 4 [(x —xo)* + (y —yo)* + Z2]5/2 (10.112)

__HA —x)+(y—yo) -2z 10.113)

47 [(x = x0)* + (y = yo)* + 27

An algorithm for calculating the influence of this quadrilateral constant
strength doublet panel is given in Appendix D, Program No. 11.

10.4.3 Constant Doublet Panel Equivalence
to Vortex Ring

Considpr the doublet panel of Section 10.4.2 with constant strength u. Its
potential (Eq. (10.104)) can be written as

# [zdS
4 s 7'3
where 7 =V(x — xo)” + (y — y5)* + z°. The velocity is

T z . 9z 9 z 1 3z
rrom-2 v (12 nios-)
9 an s r 4z Jg .8x0r3+j8yor3+k rr as

where we have used
21 21 a1
axr®  3xer*  oyr
.Now, let C represent the curve bounding the panel in Fig. 10.15 and
consider a vortex filament of circulation T' along C. The velocity due to the
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filament is obtained from the Biot—Savart law (Eq. (2.68)) as
r J’ diXr
C

1= 47 r
and for dl = (dx,, dy,) and ¥ = (x — x¢, y — Yo, Z) We get
Lz Lz
q=J' {'ﬁd)’o_lﬁdxo'*'k[(y — Yo) dxo — (x — Xo) d)’O]}
C
Stokes theorem for the vector A is
§ A-dl=jn-VxAdS
C S
and with n = k this becomes

A, OJA
A°dI=I (—y——x> das
i s\dxg Iy

Using Stokes’ theorem on the above velocity integral we get

r 3 2] d x— 3y — Yo\
q=—f [i_is'*'j_is_ <_x 3xo+—"_y 3)’0)] ds
4 gL Oxgr Ayor 3xy r Sy, r

Once the differentiation is performed, it is seen that the velocity of the
filament is identical to the velocity of the doublet panel if I' = u.

The above derivation is a simplified version of the derivation by Hess (in
Appendix A, Ref. 12.4), which relates a general surface doublet distribution to
a corresponding surface vortex distribution

1 r 1 dlXr
=—— | X Vu)x= +—[ —
1 4nL(n H) r as 4x C“ r

whose order is one less than the order of the doublet distribution plus a vortex
ring whose strength is equal to the edge value of the doublet distribution.

10.4.4 Comparison of Near/Far-Field
Formulas

To demonstrate the possible range of applicability of the far-field approxima-
tion, the induced velocity for a unit strength rectangular source or doublet
element, shown in Fig. 10.16, is calculated and presented in Figs. 10.17-10.22
(figutes based on Browne and Ashby'®?). The computed results for the
velocity component parallel to r in Fig. 10.16 versus distance r/a (where a is
the panel length as shown in Fig. 10.16) clearly indicate that the far-field and
exact formulas converge at about r/a >2 (e.g. Figs. 10.17 or 10.18).

Similar computations for the total velocity induced by a doublet panel are
presented in Fig. 10.18, and at r/a > 2 the two results seem to be identical.
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A

Survey along r

[ Survey aBng diagonal

Constant-strength element

< FIGURE 10.16
a g Survey lines for the velocity induced by
a rectangular, flat element.

A velocity survey above the panel (as shown in Fig. 10.16) is presented in
Figs. 10.19-10.22. Here the total velocity survey is done in a horizontal plane
at an altitude of z/a =0.75 and 3.0, along lines parallel to the panel median
and diagonal.

These diagrams clearly indicate that at a height of z/a = 0.75 the far-field
formula (point element) is insufficient for both the doublet and source
elements. However at a distance greater than z/a = 3 the difference is small
and numerical efficiency justifies the use of the far-field formulas.

30
—sa— Source element

< —e—— Point source
E, 204
2
E4
E
= 0_
g 1

0 ‘ » - L FIGURE 10.17

0 1 ; 4 Comparison between the velocity induced by

a rectangular source element and an equiv-
alent point source versus height r/a.

Dw oA
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——&-— Doublet element

—— Point doublet

Induced velocity |q|

P FIGURE 10.18

3 4 Comparison between the velocity induced by
a rectangular doublet element and an equiv-
alent point doublet versus height r/a.

10.4.5 Constant-Strength Vortex Line Segment

Early numerical solutions for lifting flows were based on vortex distribution
solutions of the lifting surface equations (Section 4.5). The three-dimensional
solution of such a problem is possible by using constant-strength vortex line
segments, which can be used to model the wing or the wake. The velocity
induced by such a vortex segment of circulation I' was developed in Sections
2.11-2.12 and Eq. (2.68b) states

Ller

= 10.114
4z r ( )

Aq

If the vortex segment points from point 1 to point 2, as shown in Fig. 10.23,

2.0
o Source element

< Point source

—
w
I

Induced velocity | g}

FIGURE 10.19

Comparison between the velocity
induced by a rectangular source
element and an equivalent point
source along a horizontal survey
line (median).
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5.0
| © Doublet element
¢ Point doublet
4.0
E B
2 3.0
2
L
el
§ 2.0
o
g
1.0
FIGURE 10.20
Comparison between the velocity in-
duced by a rectangular doublet ele-

ment and an equivalent point doublet
along a horizontal survey line
(median).

then the velocity at an arbitrary point P can be obtained by Eq. (2.72):

_ I nXr, o

q1,2_4**§r0' -
T e, Xy nor

For a numerical computation in a cartesian system where the (x, y, z) values of

tltle points 1, 2, and P are given, the velocity can be calculated by the following
steps:

(10.115)

1. Calculate r; X r,:
(X r), =y, =3z, — 22) — (2, — 2)(¥, — ¥2)
(1 % l'Z)y = _(xp - xl)(zp —z) - (zp - 21)(xp —X3)

(rXr,), = (x, — x)(Yp —y2) — (yp = y(x, — x2)

2.0
o Source element
T © Point source
1 5 < =075
=
= 4
g
o 1.0+
>
B _
|
<
=
= 0.5 z
| } FIGURE 10.21
Comparison between the velocity in-
004 . : i : i : a duced by a rectangular source ele-
—4.0 ~20 0 20 40 Mment and an equivalent point source
x along a horizontal survey line
a (diagonat).
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bl
[=

| © Doublet element
© Point doublet

4.0
E .
Fnd
£ 3.0
2
g 4
hel
8 207
=3
<
E B
1.07 FIGURE 10.22
E Comparison between the velocity in-
) duced by a rectangular doublet ele-
0'? ; ment and an equivalent point doublet
' along a horizontal survey line

(diagonal).

Also the absolute value of this vector product is
ey X 0|2 = (1 X 12)2 + (1 X 1)5 + (1 X 1)
2. Calculate the distances ry, r;:
n= \/(xp _xl)2 + (yp - )’1)2 + (Zp - Z1)2

n= \/(xp - x2)2 + (yp - )’2)2 + (Zp - 22)2
3. Check for singular conditions. (Since the vortex solution is singular when
the point P lies on the vortex. Then a special treatment is needed in the
vicinity of the vortex segment—which for numerical purposes is assumed to

have a very small radius €)
IF (r;, Of 13, O |1y X 1,[* < €)

where € is the vortex core size (which can be as small as the truncation

error)
THEN (u = v =w =0)
dl
r 2 -
%2' Y2.22)
(x1s ¥, 21)
z
¥
op
(Xp. ¥p 2p)
FIGURE 10.23
Influence of a straight vortex line segment
X at point P.
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or else u, v, w, can be estimated by assuming solid body rotation or any

other (more elaborate) vortex core model (see Section 2.5.1 of Ref. 10.3).
4. Calculate the dot-product:
Fo X1 = (X2 —x1)(x, —x,) + (¥, — Y, =) + (22— z21)(z, — z1)
Lo I = (X2 — x1)(x, — ;) + (y, — YO, = y2) +(z,— z21)(z, — 2,)
5. The resulting velocity components are
u=K(r Xr,),
U= K(l'l X rz)y
W= K(l'l X rz)z

where

_ r (ro ) JE rz)
5 —
47 |r; Xn,) n r

For computational purposes these steps can be included in a subrouti
’ ' utine (e.g.,
VORTXL—vortex line) that will calculate the induced velocity (u, v, w) atg a

point‘P(x, ¥,2z) as a function of the vortex line strength and its edge
coordinates, such that

(u, v, w) =VORTXL(x, y, z, x,, y1, z;, X, Y2, 25, T) (10.116)

As an example for programming this algorithm see subroutine VORTE
X
(VORTEX = VORTXL) in Program No. 12 in Appendix D.

10.4.6 Vortex Ring

Based on the subroutinc.: of Eq. (10.116), a variety of elements can be defined.
For example, the velocity induced by a rectilinear vortex ring (shown in Fig.
10.24) can be computed by calling this routine four times for the four

(X4, Y4, Z4)
(XS’ ¥3, 23)

(X2, ¥2, 23)

&1, ¥, 21)

FIGURE 10.24
Influence of a rectilinear vortex ring.
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segments. Note that this velocity calculation is equivalent to the result for a
constant-strength doublet.

To obtain the velocity induced by the four segments of a rectangular
vortex ring with circulation I' calculate

(41, v1, w1) = VORTXL (x, y, z, X3, y1, 21, X2, Y2, 22, )
(43, U2, W) = VORTXL (x, y, 2, X2, Y2, 23, X3, ¥3, 23, I')
(us, v3, w3) = VORTXL (x, y, z, X3, 3, 23, X4, Y4, Za, I')
(U4, V4, wi) = VORTXL (x, y, z, X4, Ys, 24, X1, Y1, 21, )
and the induced velocity at P is
(u, v, w) = (U, vy, wp) + (us, Vs, wo) + (U3, U3, W) + (Uy, Vs, Wy)
This can be programmed into a subroutine such that

X Yy z
u X1 N 2
'U) =VORING X2 Y2 2 (10117)
(w X3 V3 23
Xa Ya 24
r

In most situations the vortex rings are placed on a patch with i, j indices,
as shown in Fig. 10.25. In this situation the input to this subroutine can be
abbreviated by identifying each panel by its i, jth corner point.

(u, v, w)=VORING (x, y, z, i, j, [') (10.117a)

From the programming point of view this routine simplifies the scanning of the
vortex rings on the patch. However, the inner vortex segments are scanned
twice, which makes the computation less efficient. This can be improved for
larger codes when computer run time is more important than programming
simplicity.

Note that this formulation is valid everywhere (including the center of the
element) but is singular on the vortex ring. Such a routine is used in Program
No. 12 in Appendix D.

FIGURE 10.25
The method of calculating the in-
fluence of a vortex ring by adding the
influence of the straight vortex seg-
ment elements.
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10.4.7 Horseshoe Vortex

A simplified case of the vortex ring is the horseshoe vortex. In this case the
vortex line is assumed to be placed in the x—y plane as shown in Fig. 10.26
The two trailing vortex segments are placed parallel to the x axis at y =y, ;m(i
aty =y, and the leading segment is placed parallel to the y axis betwee; the
points (x,, y,) and (x,, y»). The induced velocity in the x—y plane will have
only a component in the negative z direction and can be computed by using
Eq. (2.69) for a straight vortex segment:
-T

w(x, y,0)= ind (cos B, —cos 8,) (10.118)
where the angles and their cosines are shown in the Fig. 10.26. For example
for the semi-infinite filament shown, ’

X —Xx;
Vi —x) +(y —n)°

For the vortex segment parallel to the x axis, and beginning at y =y,, the
corresponding angles are

cos B, =

cos B, = X —Xx,
VX + (- w)
cos ff,=cosm=-1

For the finite-length segment parallel to the y-axis,

— Y = Ya
cos s Vx = x,)" + (y —y.)

Y=

cos B, = —cos(ﬂ—52)=\/(x—x VO =w)

YA
r
Vb ™ bd
y —\/\’ - )‘\ oo
¢ (Xa Ya) —/ >
X >
FIGURE 10.26

Nomenclature used for deriving the influence of a horseshoe vortex element.
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The downwash due to the horseshoe vortex is now

_-ry 1 Yo =Y Y Y
wix, », 0 =47 {x —xa[ (x—x)*+(y —yb)2+ Vix —x.)° +(y —yu)z]

- [1+ e 2]
Yo =¥ (x —x)"+(y =)
- [1+ X L ]} (10.119)

Y = Ya \/(7_ xa)2+ (}’ _ya)2
After some manipulations we get
-T - x, 2+ - Y, 2
w(x, y, 0) = [HV(x X)) +(y y)]
47(y = ya) X =X
r _ 2_+_ _ 2
+ [1 f Yo%) A Z ) ] (10.119)
4r(y = ¥s) X=X
When x = x,, the limit of Eq. (10.119) becomes
-T 1 1
w(xa, ,0)=—[ + ] (10.1195)
(e, 4w ly=Yya Y=y

where the finite-length segment does not induce downwash on itself.

The velocity potential of the horseshoe vortex may be obtained by
reducing the results of a constant strength doublet panel (Section 10.4.2) or by
integrating the potential of a point doublet element. The potential of such a
point doublet placed at (xo, yo, 0) and pointing in the z direction, as derived in

Section 3.5 (or in Eq. (10.110)) is
Tz

4xr’

where r=V({x —xo)>+ (y —y)>+ 2> To obtain the potential due to the
horseshoe element at an arbitrary point P, this point doublet must be
integrated over the area enclosed by the horseshoe element:

b= :_E i d Jm z dxg
4n )y, Yo e [(x = x0)* + (¥ — o) + 217
The result is given by Moran,>' p. 445, as

_rm z(xo— x) dyo z

“an ), [~y 2N —xof + (v —yo) + 21 L,

_ =TI z dy, [ + X —X, ]
am ), [ =y + 2L [k —xl +(y —yo)* + 271"

Yo

(Yo = y)(x — Xa) }

_r —
=— {tan‘1 Yo ¥ 4 tan™!
z

4r Z[(x —x, ) + (y —yo)* + 27120 |,

- - 4 2 _ (Yo— y)(x — Xa) "’}
=—{tan™! —tan ' ——+tan™!

4 { Y=Y Y= Ya Z[(x —x )2+ (y —yo)* + 2% |,

(10.120)
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Note that we have used Eq. (B.4a) from Appendix B to evaluate the limits of
the first term.

10.5 THREE-DIMENSIONAL HIGHER-
ORDER ELEMENTS

The surface shape and singularity strength distribution over an arbitrarily
shaped panel can be approximated by a polynomial of a certain degree. The
surface of such an arbitrary panel as shown in Fig. 10.27a can be approximated
by a “zero-order” flat plane
z=a

by a first-order surface

z=ag+bx+byy
by a second order surface

z=ay+ byx + by + X2+ coxy +63y°

or any higher-order approximations. Evaluation of the influence coefficients in
a closed form is possible,“"1 though, for flat surfaces and an approximation of
a curved panel by five flat subpanels is shown in Fig. 10.27b. This approach is
used in the code PANAIR®? and for demonstrating a higher-order element let
us describe this element.

For the singularity distribution a first-order source and a second-order
doublet is used, and in the following paragraph the methodology is briefly
described:

INFLUENCE OF SOURCE DISTRIBUTION. The source distribution on this
element is approximated by a first-order polynomial:

0(x0, Yo) = 0o+ 0,Xo + 0, Yo (10.121)

(b (a)

FIGURE 10.27
Approximation of a curved panel by five flat subpanels.
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where (xo, Yo) are the panel local coordinates, 0o, the source strength at the
origin, and 0y, O, and o, are three constants. The contribution of this source
distribution to the potential A® and to the induced velocity A(u, v, w) (in the
panel frame of reference) can be evaluated by performing the integral

1 G(xo, yo) ds
Ad(x, y, z =—j 10.122
.2) 47 Jyana V(x — x0)* + (y —yo)* + z* ( )
and then differentiating to get the velocity components
P 3P 9P
A y Us =<—)_)——) 10.12
(u, v, w) ' 3y oz (10.123)

The result of this integration depends solely on the geometry of the problem
and can be evaluated for an arbitrary field point. Some details of this
calculation are provided by F. T. Johnson®? and can be reduced to a form that
depends on the panel corner point values (the corner point numbering
sequence is shown in Fig. 10.27b.). Thus, in terms of these cornerpoint values
the influence of the panel becomes

AdD = F:g(a], gy, 03, 04, 09) =fs(00, O,» Uy) (10. 124)
A(u, v, w) = Gs(0,, 02, 03, 04, 05) =gs(0o, Oy, 0y) (10.125)

where the functions F, G, and f, g are linear matrix manipulations. Also, note
that oo, 0,, 0, are the three basic unknowns for each panel and 0y, ..., 0
can be evaluated based on these values (so that for each panel only three
unknown values are left).

INFLUENCE OF DOUBLET DISTRIBUTION. To model the two components
of vorticity on the panel surface a second-order doublet is used:

(X0, Yo) = tho+ thaXo + My Yo+ HeiX + HxyXoYo+ tyyys  (10.126)

The potential due to a doublet distribution whose axis points in the z direction
(see Section 3.5) is

1 u(xo, ¥o) - zdS
P(x,y,2)=—— 10.127
(<., 2) 4 Js[(x —xo +(y— o) + 2% ( )
and the induced velocity is
P 30 3P
y UL W)=\F2T 37 an 10.128
@, v, w) (ax ) az) ( )

These integrals can be evaluated (see F. Johnson®?) in terms of the panel
corner points (points 1-9, in Fig. 10.27b) and the result can be presented as

AD = Fp(tt1, B2, B3, Has M, Bes B2, s, Ho)
=fD(I“'0) Mx) #y} ’J'xx) uxy; ”’yy) (10 129)
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A(u, v, w) = Gp(t1, U2, B3, K4y s, Bes 17, Us, Ho)
=gD(”'0’ Bxs By, Mxs Hxys Myy) (10 130)

where the functions F, G, and f, g are linear matrix manipulations, which
depend on the geometry only. Also, note that fo, Wy, Ky, Bxx> Bxy, Hyy are the

five basic unknowns for each panel and y,, . . ., 1o can be evaluated based on
these values (so that for each panel only five unknown doublet parameters are
left).

For more details on higher-order elements, see Ref. 9.2.
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PROBLEMS

10.1. Find the x-component of velocity u for the constant-strength source
distribution by a direct integration of Eq. (10.12).

10.2. Find the velocity potential for the constant doublet distribution by a
direct integration of Eq. (10.25).

10.3. Consider the horse shoe vortex of Section 10.47, which lies in the x-y
plane. For the case where the leading segment lies on the x axis (x, =0)
find the velocity induced at a point whose coordinates are x, y, and z that
lies above the plane of the horse shoe.

CHAPTER

11

TWO-DIMENSIONAL
NUMERICAL
SOLUTIONS

The principles of singular element based numerical solutions were introduced
in Chapter 9 and the first examples are provided in this chapter. The following
two-dimensional examples will have all the elements of more refined three-
dimensional methods, but because of the simple two-dimensional geometry the
programming effort is substantially less. Consequently, such methods can be
developed in a short time for investigating improvements in larger codes and
are also suitable for homework assignments and class demonstrations.

Based on the level of approximation of the singularity distribution,
surface geometry, and type of boundary conditions, a large number of
computational methods can be constructed, some of which are presented in
Table 11.1. We will not attempt to demonstrate all the possible combinations
but will try to cover some of the most frequently used methods (denoted by the
word “Example” in Table 11.1) which include: discrete singular elements, and
constant strength, linear, and quadratic elements (as an example for higher-
order singularity distributions). The different approaches in specifying the zero
normal velocity boundary condition will be exercised and mainly the outer
Neumann normal velocity and the internal Dirichlet boundary conditions will
be used (and there are additional options, e.g., an internal Neumann
condition). In terms of the surface geometry, for simplicity, only the flat panel
element will be used here and in areas of high surface curvature the solution
can be improved by using more panels.

301
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TABLE 11.1
List of possible two-dimensional panel methods tested in this
chapter

Singularity Boundary conditions Surface paneling
distribution Flat/high-order
Neumann  Dirichlet
(external)  (internal)

Point source Example Flat
doublet
vortex Example Flat
Constant source Example Example Flat
strength doublet  Example Example Flat
vortex Example Flat
Linear source Example Example Flat
strength doublet  Example Example Flat
vortex
Quadratic source
strength doublet Example Flat

vortex

In this chapter and in the following chapter the primary concern is the
simplicity of the explanation and the ease of constructing the numerical
technique, while numerical efficiency considerations are secondary. Conse-
quently, the numerical economy of the methods presented can be improved
(with some compromise in regard to the ease of code readability). Also, the
methods are presented in their simplest form and each can be further
developed to match the requirements of a particular problem. Such improve-
ment can be obtained by changing grid spacing and density, location of
collocation points, wake model, method of enforcing the boundary conditions,
and of the Kutta condition.

Also it is recommended to read this chapter sequentially since the first
methods will be described with more details. As the chapter evolves, some
redundant details are omitted and the description may appear inadequate
without reading the previous sections.

11.1 POINT SINGULARITY SOLUTIONS

The basic idea behind point singularity solutions is presented schematically in
Fig. 11.1. If an exact solution in the form of a continuous singularity
distribution (e.g., a vortex distribution 7(x)) exists, then it can be divided into
several finite segments (e.g., the segment between X1—x,). The local average
strength of the element is then I’y = J2 y(x) dx and it can be placed at a point
Xo within the interval x,-x,. A discrete-element numerical solution can be
obtained by specifying N such unknown element strengths and then estab-

TWO-DIMENSIONAL NUMERICAL SOLUTIONs 303

Z “ Z “
Y(x) i
< Lo = | 10 de
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x; + k(x; —x)p)

FIGURE 11.1
Discretization of a continuous singularity distribution.

lishing N equations for their solution. This can be done by specifying the
boundary conditions at N points along the boundary (and these points are
called collocation points). Also, when constructing the solution, some of the
considerations mentioned in Section 9.3 (e.g., in regard to the Kutta condition
and the wake) must be addressed.

As a first example, this very simple approach is used for solving the lifting
and thickness problems of thin airfoils, which were treated analytically in
Chapter 5.

11.1.1 Discrete Vortex Method

The discrete vortex method, which is presented here for solving the thin lifting
airfoil problem, is based on the lumped-vortex element and serves for solving
numerically the integral equation (Eq. ((5.39)) presented in Chapter 5. The
advantage of the numerical approach is that the boundary conditions can be
specified on the airfoil’s camber surface without a need for smail-disturbance
approximation. Also, two-dimensional interactions such as ground effect or
multielement airfoils can be studied with great ease.

This method was introduced as an example in Section 9.8 and therefore
its principles will be discussed here only briefly. To establish the procedure for
the numerical solution, the six steps presented in Section 9.7 are followed:

Choice of singularity element. For this discrete-vortex method the lumped-
vortex element is selected and its influence is given by Eq. (9.31) (or Egs.

(10.9) and (10.10)):
(::):2:1;:}(—(1) 3)@:) (1.1)

rr=x-x) +(z-z)>

where
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Thus, the velocity at an arbitrary point (x, z) due to a vortex element of
circulation I'; located at (x;, z;) is given by Eq. (11.1). This can be included in a
subroutine, which will be called VOR2D:

(u, w)=VOR2D (T}, x, z, x;, 2;) (11.2)
Such a subroutine is included in Program No. 13 in Appendix D.

Discretization and grid generation. At this phase the thin-airfoil camberline
(Fig. 11.2) is divided into N subpanels, which may be equal in length. The N
vortex points (x;, z;) will be placed at the quarter-chord point of each planar
panel (Fig. 11.2). The zero normal flow boundary condition can be fulfilled on
the camberline at the three-quarter chord point of each panel. These N
collocation points (x;, z;) and the corresponding N normal vectors n; along with
the vortex points can be computed numerically or supplied as an input file. The
vectors normal to the surface m; pointing outward at each of these points is
found from the surface shape n(x), as shown in Fig. 11.3:

d
%)
n; =———— = (sin q;, cOs «;) (11.3)
(91)" 44
dx
where the angle «; is defined as shown in Fig. 11.3. Similarly the tangential
vector {; is

t; = (cos a;, —sin «;) (11.3a)

Since the lumped-vortex element chooses the correct circulation (Kutta
condition), the last panel will inherently fulfill this requirement, and no
additional specification of this condition is needed.

A

=¥

FIGURE 11.2
Discrete vortex representation of the thin, lifting airfoil model.
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n, = (sin a;, cos a;)

n{(x)

iy

t, = (cos a;, — sin a;)

a;

=

FIGURE 11.3
Nomenclature used in defining the geometry of a point singularity based surface panel.

Influence coefficients. The normal velocity component at each point on the
camberline is a combination of the self-induced velocity and the free-stream
velocity. Therefore, the zero normal flow boundary condition can be presented
as

g-n=0 on solid surface

Division of the velocity vector into the self-induced and free-stream com-
ponents yields

(u,w)-n+ (U, W.)-n=0 on solid surface (11.4)

where the first term is the velocity induced by the singularity distribution on
itself (hence “self-induced part””) and the second term is the free-stream
component Q.. = (U, W..), as shown in Fig. 11.2.

The self-induced part can be represented by a combination of influence
coefficients, while the free-stream contribution is known and will be transferred
to the right-hand side (RHS) of the boundary condition. To establish the
self-induced portion of the normal velocity, at each collocation point, consider
the velocity induced by the jth element at the first collocation point (in order
to get the influence due to a unit strength I; assume I'; = 1 in Eq. (11.2)):

(u, w)ll = VOR2D (rl = 1, X1, 21, x,-, Z]) (11.2(1)

The influence coefficient a;; is defined as the velocity component normal to the
surface. Consequently, the contribution of a unit strength singularity element j,
at collocation point 1 is

ay=(u, w)y*m (11.5)

The induced normal velocity component g,,, at point 1, due to all the
elements is therefore

gu=anltal+apl+ - +apnly

Note that the strength I'; is unknown at this point.
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Fulfillment of the boundary condition on the surface requires that at each
collocation point the normal velocity component will vanish. Specification of
this condition (as in Eq. 11.4) for the first collocation point yields

aurl + a12r2 + a13r3 + A + alNFN + (Uw, Wm) * l‘ll = 0

But, as mentioned earlier, the last term (free-stream component) is known and
can be transferred to the right-hand side of the equation. Consequently, the
right-hand side is defined as

RHS, = —(Ux, W.) - m; (11.6)

Specifying the boundary condition for each of the N collocation points results
in the following set of algebraic equations:

an 42 "t 4yN I, RHS,
Gy Q4 " 4N | P RHS,
as; a4z -+ a4sy Is = | RHS;
avi any -+ annf \I'y RHSy

This influence coefficient calculation procedure can be accomplished by
using two “DO loops” where the outer loop scans the collocation points and
the inner scans the vortices:

DO1i=1,N collocation point loop
DO 1j=1,N vortex point loop
(4, w); = VOR2D (I' = 1.0, x;, z;, X, Z;)
a; = (u, w); - m

1 CONTINUE
C END DO LOOP

Establish RHS vector. The right-hand side vector, which is the normal
component of the free stream, can be computed within the outer loop of the
previously described “DO loops” by using Eq. (11.6):

RHS, = —(U,, W.) - m,

where (U, W.) = Q.(cos @, sin «). Using the formulation of Eq. (11.3) for the
normal vector, the RHS becomes:

RHS; = —Q.(cos a sin a; + sin a cos a;) (11.6a)

Note that « is the free-stream angle of attack (Fig. 11.2) and a; is the ith panel
inclination.

Solve linear set of equations. The results of the previous computations can be
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FIGURE 11.4
Representation of a lifting flat plate by five discrete vortices.

summarized (for each collocation point i) as
N
>, a,T;=RHS; (11.7)
j=1

and as an example for the case of a flat plate (shown in Fig. 11.4) where only
five equal-length elements (Ac = ¢/5) were used Eq. (11.7) becomes

U T RN i
N e T i, 1
T Ac 1 -1 1 i | =-0Q.sinal 1
4 -1 -1 a1 1f\n i
R AT 1

This linear set of algebraic equations is diagonally dominant and can be solved
by standard matrix methods, and the solution of the above set of algebraic
equations is

I, 2.46092
I, 1.09374
I ] =aAcQ.sin af 0.70314
I, 0.46876
I 0.27344

This solution is shown schematically in Fig. 11.5

Secondary computations: pressures, loads, velocities, etc. The resulting pres-
sures and loads can be computed by using the Kutta—Joukowski theorem for
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v A
C, =0.548
n
Y Ac
v = 2
2= Ac T
S R v I 5
Ae [rs~ac

FIGURE 11.5

S )

Graphic representation of the computed vorticity distribution with a five-element discrete vortex

method.

each panel j. Thus the lift and pressure difference are
AL; = pQ.T;

| P
Ap;=pQ= 1~

(11.8)

(11.9)

where Ac is the panel length. The total lift and moment per unit span (about
the leading edge) are obtained by summing the contribution of each element:

N
L=> AL;

j=1

N
M=, AL(x; cos a)

j=1

while the nondimensional coefficients become

L
C=———
' 1pQ2c

M
Con = s
1005

The following examples are presented to demonstrate possible
this method.

Example 1 Thin airfoil with parabolic camber. Consider the
parabolic camber of Section 5.4, where the camberline shape is

o<1

(11.10)

(11.11)

(11.12)

(11.13)

applications of

thin airfoil with
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20
Analytic
15k ®  Present method
AC,
e/c 10k
5T a=0
N=10
1 1 i 1 1 L i I L
1.0
n/e Parabolic camber
0 L 1 L 1 1 A 1 1 1
0 0.2 0.4 0.6 0.8 1.0
/
FIGURE 11.6 e

Chordwise pressure difference for a thin airfoil with parabolic camber at zero angle of
attack.

For small values of € <0.05 the numerical results are close to the analytic results,
as shown in Fig. 11.6. However, when increasing the airfoil height € to 0.1, the
effects of the small-disturbance approximation to the boundary conditions
become more evident (see Fig. 11.7). Note that for the numerical solution the
vortices were placed on the camberline where the boundary condition was
satisfied, whereas for the analytical solution the vortex distribution and boundary
conditions were specified on the x axis.

The effect of angle of attack is shown in Fig. 11.8 where a fairly large angle

2.8 A Boundary conditions on camberline
8 Boundary conditionson z = 0
— Analytic solution (Section 5.4)

241

AC,

0.8}
Analytical /

C, = 1.0186
a=0°

(N = 20 panels)

0.4
FIGURE 11.7

Effect of small-disturbance bound-
0"20 Of 0 0.160 0.80 100 A&y condition on the computed
pressure difference of a thin para-
bolic camber airfoil (a = 0).

ES
¢
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3.6 . )
A Boundary conditions on camberline
® Boundary conditions on z = 0

32 — Analytic solution (Section 5.4)

2.8

24

AC
20

a=10°

0.8F (N = 20 panels)
0 Analytical —
4r C = 2.3780 FIGURE 11.8
Effect of small disturbance
0 . \ . boundary condition on the

0 020 040 060 0380 1.00 computed pressure difference
on a thin parabolic camber air-
foil (o = 10°).

(a=10° is used. Note the large suction peak at the leading edge, which is
exaggerated by the analytic solution. FIGURE 11.9

Effect of airfoil/flap proximity on their chordwise pressure difference.
Example 2 Two-element airfoil. The advantage of this numerical solution
technique is that it is not limited to the restrictions of small-disturbance boundary
conditions. For example, a two-element airfoil with large deflection can be
analyzed (and the results will have physical meaning when the actual flow is
attached).

Figure 11.9 shows the geometry of the two-element airfoil made up of
circular arcs and the pressure difference distributions. The interaction is shown by
the plots of the close and separated elements (far from each other). When the
elements are apart, the lift of the first element decreases and of the second
increases.

First element

Example 3 Sensitivity to grid. After this first set of numerical examples, some
possible pitfalls of the numerical approach can be observed, and hopefully
avoided later.

First note the method of paneling the gap region in the previous example of
the two-element airfoil (Fig. 11.10). If very few elements are used, then it is /

FIGURE 11.10

Method of paneling the gap region
of a two-element airfoil (discrete
vortex model).

Second element
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W 1
T

FIGURE 11.11

Schematic survey of induced normal velocity above a thin airfoil (as shown in Fig. 11.4)
modeled by discrete vortices.

always advised to align the vortex points with vortex points and collocation points
with collocation points. We must remember that a numerical solution depends on
the model and the grid (and hence is not unique). The convergence of a method
can be tested by increasing the number of panels, which should result in a
converging solution. Therefore, it is always advisable to use smaller panels than
the typical length of the geometry that we are modeling. In the case of the
two-element airfoil, the typical distance is the gap clearance, and (if possible with
the more refined methods) panelling this area by elements of at least one-tenth
the size of the gap is recommended.

Another important observation can be made by trying to calculate the
velocity induced by the five-element, vortex representation of the flat plate of Fig.
11.4. If the velocity survey is performed at z = 0.05¢, then the wavy lines shown
in Fig. 11.11 are obtained. The waviness will disappear at larger distances, and in

FIGURE 11.12
Downwash induced by a
lumped-vortex element.
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any computation careful investigation is needed for the near- and far-field effects
of a particular singular element distribution.

Of course, in the previous examples, fairly accurate solutions were obtained
with very few panels. This is because the lumped-vortex element induces the
same downwash at the collocation point (3/4, 0)a as the exact flat plate solution,
as depicted by Fig. 11.12.

11.1.2 Discrete Source Method

Based on the principles of the previous section, let us develop a discrete source
method for solving the symmetric, nonzero thickness airfoil problem of Secthn
5.1. For developing this method, too, let us follow the six steps suggested in
Section 9.7 and apply them to the solution of the thin symmetric airfoil.

Selection of singularity element. The results of Chapter 5 indicate t!lat the
solution of the thin symmetric airfoil problem can be based on (discrete)
source elements. The velocity induced by such an element placed at (x;, z) agd
with a strength of g; is given by Eqs. (10.2) and (10.3) and can be expressed in

trix form as
matrix (u)= g; (1 0>(x—x,~> (11.14)
w/ 2xr;\0 1/\z -z

r=x-x)+z-z)
The above calculation can be included in a subroutine such that
(u, w) =SORC2D (g}, x, z, x;, z;) (11.15)

and (x, z) is the field point of interest.

where

Discretization of geometry. First and most important is the definition of thﬁ:
coordinate system, which is shown in Fig. 11.13. Since the problem is

ZA

n; ﬂ(x)
n;

n,

Y
4
q
q

FIGURE 11.13
Discrete source model of symmetric airfoil at zero angle of attack.
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A

Collocation point

FIGURE 11.14
Relocation of the first and last
collocation point to improve the
numerical solution with the discrete
Sources source method.

=Y

symmetric, the unknown o; elements are placed along the x axis, at the center
of N equal segments at x;_,, X;—3, X;=3, - - -, Xj=n-

Next, the collocation points need to be specified. In this case it is possible
to leave these points on the airfoil surface as shown in Fig. 11.13, and the
values of these points (x,—;, zi=1), (Xi=2, Zi=2), - - ., (Xi=n» Zi=n) need to be
established. The normal n; pointing outward, at each of these points, is found
from the surface shape n(x), as defined by Eq (11.3). As is demonstrated by
the example at the end of this section, the solution can be improved
considerably by moving the first and the last collocation points toward the
leading and trailing edges, respectively (see Fig. 11.14).

Influence coefficients. In this phase the zero normal flow boundary condition is
implemented in a manner depicted by Eq. (11.4). For example, the velocity
induced by the jth element at the first collocation point can be obtained by
using Eq. (11.15) and is

(u, w)lj =SORC2D (0], X1, 21, xl‘, Z]) (11.16)

The influence coefficient a; is defined as the self-induced velocity component
normal to the surface. Consequently, the contribution of a unit strength
singularity element g; =1, at collocation point 1 is

ay=(u, w)y - m

The induced normal velocity component g,,;, at point 1, due to all the
elements is then

qn1 = a0, + 120, + @305+ - +a;nOn

and the strength of g; is unknown at this point.

Establish boundary condition (RHS). Fulfilling the boundary condition on thﬁ,

surface requires that at each collocation point the normal velocity componené
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will vanish. Specifying this condition for the first collocation point yields
a,101 + 1,0, + a303 ° * + a,NOn + (Um, Wm) ‘n = 0
where of course W,,=0. But the last term (free-stream component) is known
and can be transferred to the right-hand side of the equation. Using the
deflnition of Eq. (11.6) for the right-hand side it becomes
RHS; = —(U., W.) - m; = —U,sin a; (11.6b)

Specifying the boundary condition for each of the collocation points results in a
set of algebraic equations, similar to the previous discrete vortex example:

ay a2 " 4N (1 RHS,
4y Gy " AN o, RHS,
as; a4z " Azy o3 | =| RHS;
anm AQz> 't GnN ON, RHSy

This procedure is automated by a double “DO loop” where the
collocation points are scanned first and then at each collocation point the
influences of the singularity elements are scanned.

Solve equations. The above set of algebraic equations can be solved for g; by
using standard methods of linear algebra. It is assumed here that the reader is
familiar with such methods, and as an example a direct solver can be found in
the computer programs of Appendix D.

Calculation of pressures and loads. Once the strength of the sources o; is

known, the total tangential velocity Q, at each collocation point can be
calculated using Eq. (11.15) and Eq. (11.3a):

N
Q.= [Z (u, w); + (U, Ww)] -t (11.17)
j=1
The pressure coefficient then becomes
2
C,,=l—% (11.18)

Since this flow is symmetric, no lift and drag will be produced (based on
Fhe conclusions of Section 5.1). Therefore, no further load calculations are
Included for this case.

Also, note that for a closed body the net flow generated inside the body
N

must be zero (¥ 0;=0), and this condition may be useful for evaluating
i=1

Numerical results.

Example 1 15 percent thick symmetric airfoil. The above method is applied to
the 15 percent-thick airfoil of Section 6.6. If the collocation points are left above
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04r — Analytical solution
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FIGURE 11.15

Calculated and analytical chordwise pressure coefficient on a symmetric airfoil (a=0):
triangles—with collocation points above source points; and crosses—with front collocation
point moved forward and rear collocation point moved backward to 0.9 panel length,
respectively.

the source points, as in Fig. 11.13, then the results shown by the triangles in Fig.
11.15 are obtained. This solution, clearly, is highly inaccurate near the leading
edge. However, by moving the front collocation point more forward (to the 0.9
panel length location) and the rear collocation point closer to the trailing edge (to
the 0.9 panel length location), as shown in Fig. 11.14 (and not moving the source
points), a much improved solution is obtained. This solution, when compared
with the exact solution of Section 6.6 is satisfactory over most of the region,
excluding some minor problems near the trailing edge (Fig. 11.15).

11.2 CONSTANT-STRENGTH
SINGULARITY SOLUTIONS (USING THE
NEUMANN BOUNDARY CONDITION) ‘

A more refined discretization of a continuous singularity distribution is the
element with a constant strength. This type of element is shown schematically-
in Fig. 11.16, and it is assumed that

o =z
Xy — X1
and as (x,—x;)—0 the approximation seems to improve. In this case,

%) 1
j o(x) dx, &
1 .
only one constant (the strength of the element) is unknown and by dividing th§
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FIGURE 11.16
Constant-strength singularity approximation for a continuous strength distribution.

surface into N panels and specifying the boundary conditions on each of the
collocation' points, N linear algebraic equations can be constructed.

In principle, the point singularity methods are satisfactory in estimating
thg zero-thickness camberline lift, but are inadequate near the stagnation
points of a thick airfoil. The constant-strength methods are capable of more
accuracy near the stagnation points and can be used to model closed surfaces

with thickness resulting in a more detailed pressure distribution, which is
essential for airfoil shape design.

11.2.1 Constant-Strength Source Method

The consta.nt-strength source methods that will be presented here are capable
of calculating the pressures on a nonlifting thick airfoil and were among the

first successful codes used.'®! For explaining the method, we shall follow the
basic six-step procedure:

Selection of singularity element. Consider the constant-strength source ele-
ment gf Section 10.2.1, where the panel is based on a flat surface element. To
f:stabhsh a qormal—velocity boundary condition based method, only . the
lélduced velocity formulas are used (Eqs. (10.17) and (10.18)). The parameters
@ anq r are shown in Fig. 11.17 and the velocity components (u, w), in the
irections of the panel coordinate system are i

A s

b= a2 (11.19)
o

Wp=a(92 - 91) (1120)

I .
D terms of the panel x—z variables these equations become
u = 1 (x - x1)2 + 22

= an " (=1, 22 panel coordinates (11.21)
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“‘Global’’ coordinate
z A Px, 2)

‘‘Panel’’ coordinate

Zp r
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(xi, 21) Ch

n(x)

~Y

FIGURE 11.17
Nomenclature for a planar surface panel.

W, = — [tan‘1 —tan™! —= ] panel coordinates  (11.22)
2n X —X; X —X;

Note that for simplicity, the subscript p was omitted in these equations since in
general it is obvious that the panel coordinates must be used (however, when
the equations depend on the r, 8 variables only, as in this case, the global x, z
coordinates can be used, too). This approach will be used in all following
sections when presenting the influence terms of the panels. To transform these
velocity components into the directions of the x-z global coordinates, a
rotation by the panel orientation angle «; is performed such that

u cosa; sina;\/u
()= Ciner cona)) o)
w —sina; cos a;/ \w,
For later applications when the coordinates of the point P must be transformed
into the panel coordinate system the following transformation can be used:

(x) _ <cos a; —sin ai)(x - xo) (11.23a)

z/, \sing; cosa/\z—2

In this case (x,, zp) are the coordinates of the panel origin in the global
coordinate system x—z and the subscript p stands for panel coordinates.

This procedure (e.g. Egs. (11.21) and (11.22), and the transformation of
Eq. (11.23)) can be included in an induced-velocity subroutine SOR2DC
(where C stands for constant) that will compute the velocity (u, w) at an
arbitrary point (x, z) in the global coordinate system due to the jth element
whose endpoints are identified by the j and j + 1 counters:

(u, w) =SOR2DC (0, x, 2, X;, Zj, Xj11, Zj+1) (11.24)
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Discretization of geometry. As an example for this method, the 15 percent
thick symmetric airfoil of Section 6.6 is considered. In most cases involving
thick airfoils, a more dense paneling is used near the leading and trailing
edges. A frequently used method for dividing the chord into panels with larger
density near the edges is shown in Fig. 11.18. If ten chordwise panels are
needed, then the semicircle is divided by this number, thus A = x/10. The
corresponding x stations are found by using the following cosine formula:

x=§(1—cos B) (11.25)

Once the x axis is divided into N panels with strength o;, the N + 1 panel
cornerpoints (x;y, zj=1), (Xj=2, Zj=2), - - - » (Xj=n+1, Zj=n+1) are computed. The
collocation points can be placed at the center of each panel (shown by the x
mark on the airfoil surface in Fig. 11.18) and the values of these points
(Xi=1> Ziz1)y (Xiz2, Ziz2), - . -, (Xi=n, Zi—n) are computed too. The normal n;,
which points outward, at each of these collocation points is found from the
surface shape 7(x), as defined by Eq. (11.3).

Influence coeflicients. In this phase the zero normal flow boundary condition is
implemented. For example, the velocity induced by the jth element at the first
collocation point can be obtained by using Eq. (11.24) and is

(u, w)ll = SOR2DC (0], X1, 2y, x,-, ZI', xi+1, Zj+1) (1126)
o | X =

¢ .
5 (1 —cos B)

\
? ]

j=12 3 4 5 6 7 8 9 1011
B Panel corner point
13 14 15
16
12 17
Q. i=11 Collocation point 18 19 20
—_—
10 3 2 1 X
9 s 4 c
8 7 6
FIGURE 11.18

“Full-cosine” method of spacing the panels on the airfoil’s surface.
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The influence coefficient a;; is defined as the velocity component normal to the
surface. Consequently, the contribution of a unit strength singularity element j

at collocation point 1 is ay =, W)y m (11.27)

Note that a closer observation of Eqs. (11.21-11.23) shows that the normal
velocity component at the ith panel is found by rotating the velocity induced
by a unit strength j element by (a; — a;); therefore

ay; = [—sin (a; — ay), cos (@ — aq)](ul’) (11.27a)
Wi/ p
Here the velocity components (4, w), are obtained from Egs. (11.21) and
(11.22). To evaluate the influence of the element on itself, Eq. (10.24) is
recalled,
o

wy(x, 0£) == 5

(11.28)

Based on this equation, the boundary condition (e.g., in Eq. (11.4)) will be
specified at a point slightly above the surface (z =0+ in the panel frame of
reference). Consequently, when i = j the influence coefficient becomes

(11.29)

Nl

a;=

Establish boundary condition (RHS). Specifying the boundary condition, as
stated in Eq. (11.4), at collocation point 1, results in the following algebraic
equation

%01 +a,,0,+a,303 - -+ aNOn + (U, W) -my =0

where of course W.=0. The free-stream normal velocity component is
transferred to the right-hand side and the vector RHS,; is found, as in the
previous example (by using Eq. (11.6b)):

RHS, = — U, sin «;

Both the influence coefficients and the RHS vector can be computed by a
double “DO loop” where the collocation points are scanned first (and the
RHS, vector is calculated) and then at each collocation point the influences of
the singularity elements are scanned.

Solve equations. Specifying the boundary condition for each (i=1—N) of the
collocation points results in a set of algebraic equations with the unknown 0;
(j = 1— N). These equations will have the form

% Ap ot Ay 0, RHS;
1
a; 2 -t oy %) RHS,
1 _
as; Qs 2 asn o5 | =| RHS;
1
ayy A4n2 e 2 On RHS,
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The above set of algebraic equations has a well-defined diagonal and can
be solved for o; by using standard methods of linear algebra.

Calculation of pressures and loads. Once the strength of the sources o; is
known, the velocity at each collocation point can be calculated using Eq.
(11.24) and the pressure coefficient can be calculated by using Eq. (11.18).

Note that this method is derived here for nonlifting shapes and the Kutta
condition is not used. Consequently, the circulation of the airfoil will be zero
and hence no lift and drag will be produced. However, the pressure
distribution is well predicted as shown in the following Example 1.

The formulation presented here allows for the treatment of an asym-
metric body and in the case of symmetry the number of unknowns can be
reduced to N/2 by a minor modification in the process of the influence
coefficient calculation (in Eq. (11.27)). In this case the velocity induced by the
panel (u, w); and by its mirror image (u, w)j;; will be calculated by using Eq.

11.24):
( ) (u, w); =SOR2DC (0; =1, x;, 2;, X;, Zj, Xj41, Zj+1)
(u, W)::j= SOR2DC (0; =1, x;, z;, X}, =2, Xj41, —Zj+1)
and the influence coefficient g, is then
ay; = [(u, w); + (u, w)i] - my
The rest of the procedure is unchanged, but with this modification we end up
with only N/2 unknowns o; (e.g., for the upper surface only).

Example 1 Pressure distribution on symmetric airfoil. The above method is
applied to the symmetric airfoil of Section 6.6. The computed pressure distribu-

-1.0

-0.8}¢

-0.6

_04 -

-0.2F

0.2+

15 percent thick airfoil
04r 4 90 Panels

o = const., Neumann B.C.

a=0°

08l Analytical

4 & & Computation

1.0 | SR UNS NN NS R Y N NNV FR S WS WA S S Y SR S |

0.0 0.2 04 0.6 0.8 1.0

0.6

)=

FIGURE 11.19
Pressure distribution on a symmetric airfoil (at a = 0).
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tion is shown by the triangles in Fig. 11.19 and they agree well with the exact
analytical results, including the leading and trailing edge regions.

Note that in this case, too, for a closed body the sum of the sources must be
zero (L), 0,=0), and this condition may be useful for evaluating numerical
results.

A sample student computer program that was used for this calculation is
provided in Appendix D (Program No. 2).

11.2.2 Constant-Strength Doublet Method

The simplest two-dimensional panel code that can calculate the flow over thick
lifting airfoils is based on the constant-strength doublet. The surface pressure
distribution computed by this method is satisfactory on the surface, but since
this element is equivalent to two concentrated vortices at the edges of the
element, near-field off-surface velocity computations will have the same
fluctuations as shown in Fig. 11.11 (but the velocity calculated at the
collocation point and the resulting pressure distribution are correct).

Selection of singularity element. Consider the constant-strength doublet ele-
ment of Section 10.2.3 pointing in the positive z direction, where the panel is
based on a flat element. To establish a normal-velocity boundary condition
based method, the induced velocity formulas of Eqgs. (10.29) and (10.30) are
used (which are equivalent to two point vortices with a strength u at the panel
edges)

U z z .

uy = P el panel coordinates (11.30)
—u X — X X — X3 .

w, = o [(x I — C—x) T zz] panel coordinates (11.31)

Here, again, the velocity components (u, w), are in the direction of the panel
local coordinates, which need to be transformed back to the x-z system by Eq.
(11.23).

This procedure can be included in an induced-velocity subroutine
DUB2DC (where C stands for constant) that will compute the velocity (u, w)
at an arbitrary point (x, z) due to the jth element:

(u, w) =DUB2DC (u;, x, 2, X;, 2j, Xj 41, Zj+1) (11.32)

Discretization of geometry. The panel corner points and collocation points are
generated exactly as in the previous section (see Fig. 11.18). However, in this
lifting case, a wake panel shown in Fig. 11.20 has to be specified. This doublet
element will have a strength uy, and extends to x =. In practice, the far
portion (starting vortex) of the wake will have no influence and can be placed
far downstream [e.g., at (, 0)].
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Py i = puy-1 = Hr-2 Ty = uy — Myt

FIGURE 11.20 o
Schematic description of constant-strength doublet panel elements near an airfoil’s trailing edge.

Influence coefficients. To obtain the normal component of the velocity at a
collocation point (e.g., the first point) due to the jth doublet element, Eq.

(11.32) is used
(u, w)ll = DUBZDC (‘u], X1, 21, Xj, Z]', x,-+1, Zl'+1) (1133)

The influence coefficients a;; are defined as the velocity components normal to
the surface. Consequently, the contribution of a unit strength singularity
element j, at collocation point 1, is

a4y = (u, w)lj L

Similarly to the case of the constant-source method, the influence coefficients
can be found by using Eq. (11.27):

. Uy
ay; = [—sin (a; — ay), cos (a; — afl)](w A

) (11.27)

1’ p

where a; and a; are the first and the jth panel angles, as defined in Fig. 11.17,
and (uy;, wy;), are the velocity components of Egs. (11.30) and (11.31) due to a
unit-strength element as measured in the panel frame of reference.

To evaluate the influence of the element on itself, at the center of the
panel, Eqgs. (10.32) and (10.33) are recalled

u,(x, 0£)=0 (11.34)
w,(x, 0£) = *%(xz%l) (11.35)

Consequently, when i = j the influence coefficient becomes

___2 (11.35a)

7 Ac;

a;;

where Ac; is the ith panel chord.
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Establish boundary condition (RHS). The free-stream normal velocity com-
ponent RHS,; is found as in the previous examples (e.g., by using Eq. (11.6)).

Solve equations. Specifying the boundary condition of Eq. (11.4) for each
(i =1— N) of the collocation points results in a set of algebraic equations with
the unknown p; (j=1—N). However, observing the equivalent vortex
representation in Fig. 11.20 reveals that the strength of the vortex at the
trailing edge is I' = u, — un. Recalling the Kutta condition that the circulation
at the trailing edge is zero requires the addition of a wake panel that will
cancel this vortex:

(1 — pn) + pw =0 (11.36)

A combination of this equation with the N boundary conditions results in
N +1 linear equations:

an Q412 - 4N G4yw 231 RHS,
Az Qxp -~ Gy Gy 2] RHS,

an; an e e any  Anw IJN RHSN
1 0 o --- -1 1 Uw 0

This system of equations is the numerical equivalent of the boundary condition
(Eq. (11.4)) and is well defined and will have a stable solution.

Calculation of pressures and loads. Once the strength of the doublets u; is
known, the perturbation tangential velocity component at each collocation
point can be calculated by summing the induced velocities of all the panels,
using Eq. (11.33). The tangential velocity at collocation point i is then

N+1

g, = 2, (u, w); - t; (11.37)
j=1

where (u, w),; is the result of Eq. (11.33) and ¢, is the local tangent vector
defined by Eq. (11.34) and the (N + 1)th component is due to the wake. Note
that to evaluate the tangential velocity component induced by a panel on itself
Eq. (3.141) can be used:

_1au()

%=5"7 on panel (11.38)

where | represents distance along a surface line. So when evaluating the
tangential component of the perturbation velocity the result of Eq. (11.38)
must be included (when i =j in Eq. (11.37)). The pressure coefficient can be
computed by using Eq. (11.18):

Q..+ ‘It);r2

C=1- 02

(11.39)
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Collocation
point

FIGURE 11.21
Typical segment of constant-strength doublet panels on the airfoil’s surface.

where

(@)=t Qu (11.39a)

Note that the local lift can be calculated, too, by using the Kutta Joukowski
formula for a point vortex:

AL; = pQ.=; = —pQulttj+1— 1) (11.40)

where the minus sign is used for doublet panels pointing outside the airfoil.
This formulation should be equivalent to the result that we get by assuming
constant pressure on the panel,

AC,=—C, Al;cos a; (11.41)

where Al; and a; are shown in Fig. 11.21. The total lift and moment are
obtained by integrating the contribution of each element:

N
L= AL, (11.42)
j=1
N
My =D, AL;(x; cos &) (11.43)

i=1

and the nondimensional coefficients can be calculated by using Egs. (11.12)
and (11.13).

Example 1 Lifting thick airfoil. The above method was used for computing the
pressure distribution over the airfoil of Section 6.6, as shown in Fig. 11.22. The
data agrees satisfactorily with the analytic solution for both the zero (Fig. 11.224)
and five-degree angle-of-attack conditions (Fig. 11.22b). A slight disagreement is
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FIGURE 11.22
Chordwise pressure distribution on a symmetric airfoil at angles of attack of 5° and 0°.
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visible near the maximum suction area and near the rear stagnation point. These
results can be improved by moving the grid and the collocation points near these
areas, but such an optimization procedure is not carried out here. The computer
program used for this example is included in Appendix D (Program No. 3).

11.2.3 Constant-Strength Vortex Method

The constant-strength vortex distribution was shown to be equivalent to a
linear-strength doublet distribution (Section 10.3.2) and therefore is expected
to improve the solution of the flow over thick bodies. However, this method is
more difficult to use successfully compared to the other methods presented
here. One of the problems arises from the fact that the self-induced effect (Eq.
(10.43)) of this panel is zero at the center of the element (and the influence
coefficient matrix, without a pivoting scheme, will have a zero diagonal). Also,
when using the Kutta condition at an airfoil’s trailing edge (Fig. 11.23) the
requirement that y, + yy =0 eliminates the lift of the two trailing edge panels.
Consequently, if N panels are used, then only N —2 independent equations
can be used and the scheme cannot work without certain modifications to the
method. One such modification is presented in Ref. 5.1 (pp. 281-282) where
additional conditions are found by minimizing a certain error function. In this
section, we try to use an approach similar to the previous source and doublet
methods, and only the specifications of the boundary conditions will be
modified. We will follow the basic six-step procedure of the previous sections.

Selection of singularity element. Consider the constant-strength vortex ele-
ment of Section 10.2.3, where the panel is based on a flat surface element. To
establish a normal-velocity boundary condition based method, only the
induced velocity formulas are used (Eqgs. (10.39) and (10.40)):

z2—2 z-z :
u, = %r [tan“l . 2 —tan! » xl] panel coordinates  (11.44)
— X3 — A1

Y, @-x)+(z-2z)

an " (x—x) + (z - 22) panel coordinates (11.45)
—x, %

W, =

FIGURE 11.23
Constant-strength vorticity panels near the
trailing edge of an airfoil.



328 LOW-SPEED AERODYNAMICS

Here, again, the velocity components (u, w), are in the direction of the panel
local coordinates, which need to be transformed back to the x—z system by Eq.
(11.23).

This procedure can be included in an induced-velocity subroutine
VOR2DC (where C stands for constant) that will compute the velocity (x, w)
at an arbitrary point (x, z) due to the jth element:

(u, W) = VORZDC (Y], x, Z, x]', Z]', x]'+1, Z]'_+_1) (11,46)

Discretization of geometry. In terms of generating the panel corner points
(j=1, Zj=1), (Xj=2, Zj=2), - - -, (Xj=n=+1, Zj=n+1), collocation points (x;_,, Zisy),
(Xi=2, Zi=2), - - - , (Xi=n, Zi=n), Which are placed at the center of each panel,
and the normal vectors n;, the procedure of the previous section can be used
(see Fig. 11.18).

Influence coefficients. A possible modification of the boundary condition that
will eliminate the zero self-induced effect is to use an internal zero tangential-
velocity boundary condition. This is based on Eq. (9.8), which states that
inside an enclosed body ®; = const. Consequently, the normal and tangential
derivatives of the total potential inside the body are zero:

30* Ib*
o a0 (11.47)

In this particular case the inner tangential velocity condition will be used and
at each panel:

(U.+u, W+ w), - (cos a;, —sin a;) =0 (11.47a)

In order to specify this condition at each of the collocation points (which are
now at the center of the panel and slightly inside), the tangential velocity
component is obtained by using Eq. (11.46). For example, the velocity at a
collocation point 1, due to the jth vortex element is

(u, w),; = VOR2DC (;, x4, 21, %, 2j, Xj41, Zj+1) (11.48)

The influence coefficient a; is now defined as the velocity component tangent

to the surface. Consequently, the contribution of a unit-strength singularity
element j, at collocation point 1 is

ai; = (u, w)y, * (cos ay, —sin a;)

where a, is the orientation of the panel (of the collocation point) as shown in
Fig. 11.17. The general influence coefficient is then

a; = (u, w), * (cos a;, —sin ;) (11.49)

By using this boundary condition the self-induced influence of the panel is
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nonzero, and at the center of the panel, Eqgs. (10.42) and (10.43) are recalled,

Y
u,(x,0t)== 2

w,(x, 0£)=0
Consequently, when i = j the influence coefficient becomes
a;=—1% (11.50)

Establish boundary condition (RHS). The free-stream tangential velocity
component RHS,; is found by

RHS,; = —(U., W,) * (cos a;, —sin a;) (11.51)

Note that in this case the free stream may have an.angle of attaclf. The
numerical procedure (using the double “DO loop” routine) for calculatmg. the
influence coefficients and the RHS; vector is the same as for the previous

methods.

Solve Equations. Specifying the boundary condition fpr eagh (i=1—N) of
the collocation points results in a set of algebraic equations with thg unknowns
y, (j=1— N). In addition the Kutta condition needs to be specified at the
)
trailing edge:

vityn=0 (11.52)

But now we have N + 1 equations with only N unknowns. Therc':fore, one of
the equations must be deleted (e.g., the kth equation) and by adding the Kutta
condition the following matrix equation is obtained:

apn az et an Y1 RHS,
as az et arnN Y2 RHS,
Y31 &
ay-11 An-12 "0 " GN-Np LTt RHSy_,
1 0 0 oo 1 YN 0

Caculation of pressures and loads. Once the strength of the vorticgs y; is
known, the velocity at each collocation point can be calcul.ated using Eq.
(11.48) and the pressure coefficient can b? calculated by using Eq. (11.18)
(note that the tangential perturbation velocity at each panel is y;/2):

c,=1- [Qw cos (ana,.) + Y,—/Z]z

The aerodynamic loads can be calculated by adding the pressure coefﬁcient or
by using the Kutta—Joukowski theorem. Thus the lift of the jth panel is

AL] = meYj AC}-

(11.53)
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where Ac; is the panel length. The total lift and moment i
. . a
adding the contribution of each element: re obtained by

L=

=

I
-

AL (11.54)

7
N

M, = 21 ALj(x; cos &) (11.55)
pa

and the nondimensional coefficients can be calculated b i
and (11.13). y using Egs. (11.12)

Exal.nple 1 Symmetric thick airfoil at angle of attack. The above method is
a.pph.ed to the symmetric airfoil of Section 6.6. The computed pressure distribu-
tion is shown by the triangles in Fig. 11.24 and it agrees fairly well with the exact
analyt.lcal results. The point where the computations disagree is where one
equation was deleted. This can easily be corrected by a local smoothing
proce'dure, but the purpose of this example is to highlight this problem. From the
practical point of view it is better to use panels with a higher order (e.g., linear)
vortex distribution or any of the following methods. .

. Thg sample student computer program that was used for this calculation is
provided in Appendix D, Program No. 4.
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FIGURE 11.24

Chordwise pressure distribution on a symmetric airfoil at angle of attack of 5° using
constant-strength vortex panels.
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11.3 CONSTANT-POTENTIAL
(DIRICHLET BOUNDARY CONDITION)

METHODS

In the previous examples the direct, zero normal velocity (Neumann)
boundary condition was used. In this section similar methods will be
formulated based on the constant-potential method (Dirichlet boundary
condition). This condition was described in detail in Section 9.2 and in
principle it states that if 3®*/3n =0 on the surface of a closed body then the
internal potential ®; must stay constant (Fig. 11.25a)

@} = const. (11.56)

It is possible to specify this boundary condition in terms of the stream
function W (Fig. 11.25b) and in this case the body shape is enclosed by the
stagnation streamline where ¥ = const. (which may be selected as zero). Many
successful numerical methods are based on the stream function and they are
very similar to the methods described in this chapter. Also, the stream function
can describe flows that are rotational, but an equivalent three-dimensional
formulation of such methods is nonexistent. Because of the lack of three-
dimensional capability, only the velocity potential-based solutions will be
discussed here.

Following Chapter 9, the velocity potential can be divided into a
free-stream potential ®,. and perturbation potential ®, and the zero normal
velocity boundary condition on a solid surface (internal Dirichlet condition) is

o =P+ &, = const.

Placing the singularity distribution on the boundary S (and following the
two-dimensional equivalent of Eq. (9.10)—see Eq. (3.17)) this internal
boundary condition becomes

d
Pr(x,2)= Elz_rf [0 Inr— u—a;(ln r)] dS + @, = const. (11.57)
S

zA

s w0 _,

an w3 = consty

/ w, = const.,

% % w, = const,|
a

N wo = 0

\/

-
(a) (b)

FIGURE 11.25
Methods of fulfilling the zero normal velocity boundary condition on a solid surface.
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a;xd when the point (x, z) is on the surface then the coefficient 1/27 becomes
1/m.

This formulation is not unique and the combination of source and
doublet distributions must be fixed. For example, source-only or doublet-only
solutions can be used with this internal boundary condition, but when using
both types of singularity the strength of one must be prescribed. Also, any
vortex distribution can be replaced by an equivalent doublet distribution, and
therefore solutions based on vortices can be used too.

To construct a numerical solution the surface S is divided into N panels
and the integration is performed for each panel such that
X1 A |

> f olnrds -,
panel

3
Pl — l + o = .
=12 “on J;ancl” an (Inr)dS + ®. = const

The integration is limited now to each individual panel element, and for
constant, linear, and quadratic strength elements this was done in Chapter 10.
For example, in the case of constant-strength singularity elements on each
panel the influence of panel j at a point P is

1 5}
— — (I das
2” J;)anel an ( 8 r)

= (11.58)
j

in the case of a doublet distribution and for a source distribution

Py - (Inr)ds

=B, (11.59)
j

Once these influence integrals have been evaluated (as in Chapter 10) the
boundary condition inside the surface (at any point) becomes

N N
> B,o; + > Ciu; + @, = const. for each collocation point (11.60)
j=1 j=1

By a specification of this boundary condition on N collocation points, N linear
equations can be created.

11.3.1 Combined Source and Doublet Method

As the first example for this approach let us use the combination of source and
doublet elements on the surface. This means that each panel will have a local
source and doublet strength of its own. Since Eq. (11.60) is not unique, either
the source or the doublet values must be specified. Here the inner potential is
zelected to be equal to ®.. and for this case the source strength is given by Eq.
9.12) as

o =n-Q, (11.61)

Since the value of the inner perturbation potential was set to zero (or
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(@} = @..) Eq. (11.60) reduces to
N N
> Bjo;+ 2, Ciu; =0 (11.62)
j=1 j=1

This equation (boundary condition) is specified at each collocation point inside
the body, providing a linear algebraic equation for this point. The steps toward
establishing such a numerical solution are as follows:

Selection of singularity element. The velocity potential at an arbitrary point P
(not on the surface) due to a constant-strength source element was derived in
the panel’s frame of reference in Eq. (10.19):

g

(1]
4n

{or—x) =00+ 22 - (x—x) I =) + 27

~tan~! —2 )} panel coordinates  (11.63)

+22<tan_1
X2 X — X3

and that due to a constant-strength doublet element in Eq. (10.28):

z z .
o=-L [tan_1 —tan~' ] panel coordinates (11.64)
X — X2 X — x1

These equations can be included in two subroutines that calculate the potential
at point (x, z) due to the source and doublet element j:

A®, =PHICS (0, x, 2, Xj, Zj, Xj+1, Zj+1) (11.65)
Aq)d = PHICD (M], X, Z, x]', Zj, x]'+1, Zj+1) (1166)

These subroutines will include the transformation of the point (x, z) into the
panel coordinates (e.g., in Eq. (11.23a)) and it is assumed that these potential
increments are expressed in term of the global x—z coordinates. However,
since the influence coefficients depend on view angles and distances between
points, the transformation of A® back to the global coordinate system can be
skipped.

Discretization of geometry. The N + 1 panel corner points and N collocation
points are generated in a manner similar to the previous example of the
constant-strength source (Fig. 11.18). However, now the internal Dirichlet
boundary condition will be applied and therefore the collocation points must
be placed inside the body. (Usually an inward displacement of 0.05 panel
lengths is sufficient—but attention is needed near the trailing edge so that the
collocation point is not placed outside the body. In the case where the
self-induced influence is specified by a separate formula, then for simplicity the
collocation point can be left at the center of the panel surface.)
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Influence coefficients. The increment in the velocity potential at collocation

point i due to a unit-strength constant source element of panel j is obtained by
using Eq. (11.65):

b =PHICS (0;=1, x;, 2, Xjs Zjy Xjs1 Zj+1) (11.67)
and that due to the same panel but with a unit-strength doublet:
C,‘,‘ = PHICD (,uj = 1, X 25, x,», Z,-, xi+1, Z]'+1) (11.68)

Note that this calculation is simpler than in the case of the velocity
boundary condition, which required the computation of two velocity com-
ponents and a multiplication by the local normal vector.

Also the influence of the doublet panel on itself (using Eq. (10.31)) is

Cii = % (11.69)

and for the source the self-induced effect can be calculated by using Eq.
(11.67).

Determination of the influence of the doublets at each of the collocation
points will result in a N X N influence matrix, with N + 1 unknowns (where the
wake doublet uy is the (N +1)th unknown). The additional equation is
provided by using the Kutta condition (see Fig. 11.20):

(u1— pn) + pw =0 (11.36)

Combining this equation with the influence matrix will result in N + 1 linear
equations for the influence of the doublets:

€ €z 0 o O Ow) [
N+1N+1 €1 Cxp " Gy Cwl ] U2
E E Cip; = )
i=1 j=1 Cnvt Ca2 "t Cnn Cawf Y un

1 0 o --- -1 1 Uw

By replacing uy with gy — u, from Eq. (11.36), the order of the above matrix
can be reduced to N. The first row, for example, will have the form

(ci—ciwlbi + cipa+ -+ -+ (Cn + Crw ) iw

and only the first and the Nth columns will change due to the term +c;,. We
can rewrite the doublet influence such that

a;=cy; J#¥1,N
a,=¢y— Ciw ]= 1 (1170)
an=Cinyt Ciw J=N

With this definition of the doublet coefficients and with the b;; coefficients
of the source influence, Eq. (11.62), specified for each collocation point 1— N,
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will have the matrix equation form

ayy, @12, - - - > AN [ by, bray ..., bin 04
ay, 8, ...,y 1R by, by, ..., bon 03
............... o . 1=0 @11.71)
ANty ANy - - - N, 144 banis bz, -+ -, bun] \On

Establish RHS vector. By specifying the source strength at the collocation
point, according to Eq. (11.61), the second matrix multiplication can be
executed. Then this known part is moved to the right-hand side of the
equation, thus